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Executive Summary 
In this deliverable, we summarize the key findings of technical and scientific results in the area of 
interconnection networks performed inside the RED-SEA project. As we approach the end of the project, 
we outline the status and the most prominent results from the RED-SEA projects. 
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1 Introduction 
As set out in the RED-SEA DoA, RED-SEA paved the way to the next generation of European Exascale 
interconnects, including the next generation of BXI, as follows: 

- specified the new architecture using hardware-software co-design and a set of applications 
representatives of the new terrain of converging HPC, HPDA, and AI; 

- tested, evaluated, and/or implemented the new architectural features at multiple levels, 
according to the nature of each of them, ranging from mathematical analysis and modelling, to 
simulation, emulation or implementation on FPGA testbeds; 

- enabled seamless communication within and between resource clusters, and therefore the 
development of a high-performance low latency gateway, bridging seamlessly with Ethernet; 

- contributed new efficient network resource management schemes thus improving congestion 
resiliency, virtualization, adaptive routing and collective operations; 

- opened the interconnect to new kinds of applications and hardware, with enhancements for end-
to-end network services – from programming models to reliability, security, low- latency, and 
new processors; 

- leveraged open standards and compatible APIs to develop innovative reusable libraries and 
Fabrics management solutions. 

Our work in RED-SEA produced innovative hardware and software Intellectual Property (IP) items 
tailored for BXIv3 and beyond that have been tested in BXI testbeds or with hardware platforms 
connecting low-power RISC-V or ARM-based cores and even NVIDIA GPUs, to BXI interconnects, via 
custom low-latency RDMA engines that eliminate the communication overhead from the slim processor 
cores. 
 
In addition, the SAURON network simulator has been enhanced to model the BXIv3 fabric with the ability 
to collect and replay traces from state-of-the-art HPC applications and test them in 100K-node 
interconnects.  The VEF tracing framework has also been used to collect traces from a plethora of HPC 
applications in BXI or other HPC platforms, bringing in very useful insight regarding the traffic 
characteristics when running state-of-the-art HPC applications. In fact, the VEF framework has been 
instrumental in our collaboration with other European projects that focus on software aspects and with 
applications, such as IO-SEA and DEEP-SEA. We also used it to evaluate congestion control schemes 
and optimizations for collectives using traces from actual applications. Inside RED-SEA we also 
simulated actual (cycle accurate) RISC-V cores through GEM5 using the COSSIM parallel simulator 
framework, something missing from the research community. In our tests, we simulated up to 64 RISC-
V cores using and producing traces that were compared with that of ARM processors. 
 
Network resource management is a research topic of great interest for interconnection networks. At the 
same time, hardware congestion control becomes indispensable in modern HPC interconnects. As this 
topic is relatively new for HPC clusters, more research is needed to better understand the problems and 
to evaluate solutions. Inside the RED-SEA, the architecture defined for BXIv3 has laid the ground for 
effective congestion control using both flow injection throttling, virtual channels and multipath routing. In 
addition, the RED-SEA academic partners delivered and evaluated novel network resource 
management schemes, including Weighted Round Robin (WRR) link scheduling solutions that can be 
used in Ethernet links (e.g., Priority Flow Control, PFC) and link power management. Accurate 
Congestion Control has also been evaluated on an actual hardware platform with advanced monitoring 
(telemetry) and workload replaying capabilities, demonstrating up to 8x lower runtime of LAMMPS in the 
presence of hotspots. Regarding collectives, as they are a primary contributor to congestion and HPC 
application runtime, novel software and hardware solutions have been proposed and evaluated in 
computer simulations and HPC clusters showing that they can boost performance by a factor between 
2-4x.  
 
Innovative in-network compute solutions based on sPIN that further offload the processor have been 
proposed and evaluated in simulation platforms. We developed a Verilog implementation of sPIN on the 
basis of PULP Ultra-low power processing cores which we named PsPIN and evaluated this 
implementation using cycle-accurate simulations for multiple workloads showing that we can process 
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most workloads at 200 Gbit/s line rate. Newer tests in hardware testbeds demonstrated >94% 
computation-communication overlap for all message size (>98% for large messages). 
 
In parallel with significant research findings, our work in RED-SEA served as a useful vehicle for the 
specifications of BXIv3, by serving as a forum where ideas on architecture are being discussed as they 
are designed.  The BXIv3 hardware engines have evolved to support per-packet end-to-end timeouts 
and retransmissions, off-chip and on-chip caches that allow applications to post thousands of 
descriptors, and to leverage a co-processor for non-critical processing tasks inside the Portals pipeline. 
The BXIv3 NIC adopted the Ethernet link layer to connect seamlessly with modern datacenter clusters 
and to benefit from the Ethernet roadmap towards Terabit/s link rates and beyond. BXIv3 further 
supports the Portals interface and accelerated TCP/IP paths that are crucial in several commercial 
deployments.  ATOS has also joined the Ultra-fast Ethernet consortium to monitor and influence the 
evolution of next-generation Ethernet specifications.  
 
In terms of NIC design, the BXIv3 NIC shares some design options with the EU-funded efforts for low-
power NICs. Message segmentation, per-flow multi-path routing and congestion management per-flow, 
as well as dynamic hardware contexts of different flavors are examined in BXIv3 NIC and in caRVnet. 
When connected to ARM or RISC-V cores in RED-SEA testbeds, caRVnet avoids the use of the PCIe, 
which is studied further with BXI and APEnetX. APEnetX also proposes several optimizations for issuing 
small messages that greatly reduce the descriptor and data latency over PCIe. On the other hand, all NI 
designs support BXI as a link layer, support user-level communication, exploit a processor IO-MMU for 
address translations. In the case of RISC-V processors, the RISC-V IO-MMU that is developed by 
FORTH in the context of the eProcessor EuroHPC project has been integrated and tested inside the 
RED-SEA project. This activity also shows the collaboration efforts and activities between the EuroHPC-
01-2019 project based on the associated collaboration agreement. 
 
Inside RED-SEA we also designed and implemented a 100 Gb/s ETH MAC with FEC (Reed Solomon), 
PFC and CRC options. Many projects studying 100 Gb/s connectivity rely on MAC hardcore IPs which 
are available for testing in FPGAs, but these IPs cannot be implemented in ASIC and cannot be used 
in actual products without a fee. 
 
Regarding the BXIv3 ecosystem, in parallel with the hardware developments, the software for next-
generation BXI interconnects has benefitted from the research performed in RED-SEA. There has been 
extensive work both on HPC applications and on runtimes for BXI (e.g., MPI). Next, we summarize the 
main contributions. 

• new HPC (DIAPASOM) applications and benchmarks (LinkTest) have been ported and 
optimized for BXIv2, 

• several HPC applications from RED-SEA and other EuroHPC projects have been run to 
generate (VEF) trace files that were later used in computer network simulations (SAURON, 
DQN_SIM and COSSIM) inside RED-SEA, 

• BXIv3 Ethernet driver that exposes an Ethernet interface to the system, supports standard Linux 
interfaces and efficiently manages IP transfer, an reduces copy and locking overheads, 

• improvement of the Linux kernel module (ptlnet) that implements the Internet Protocol (IP) over 
BXIv2, allowing to reach 80 Gb/s in TCP/IP traffic, 

• the APEnetX system library has been enhanced with user-level communication optimizations 
and with the use of virtual addresses; the caRVnet system library was ported and evaluated on 
RISC-V cores, 

• The MPC MPI runtime  has evolved to support multiple BXI NICs to further scale throughput 
and performance evaluation has been conducted on actual BXI platforms, 

• the MPC MPI has been improved leveraging BXI features to help multi-threading,  
• the Parastation MPI and PGAS library has been ported for the integration with BXI, and tested 

on BXIv2 HPC clusters,  
• the Parastation transparent bridging capabilities have been extended to embrace BXI, allowing 

to bridge different clusters adopting InfiniBand and BXI interconnects along the Modular 
Supercomputer Architecture (MSA). 
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In the remainder of this deliverable, we summarize the key findings of different studies in the RED-SEA 
project, outlining their limitations and perspectives for future BXI interconnects and related European 
activities. Every partner presents one or two main contributions. To maintain brevity, each partner tried 
to fit contributions on a limited number of pages.  
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2 BXIv3 Network Interface 
Throughout the RED-SEA Work Packages and tasks, ATOS has been working on several aspects of 
the interconnect network: Ethernet interoperability, Internet Protocol (IP) communications, flow control 
and congestion management, adaptive routing, transport reliability and security. We have studied 
architecture and design solutions, defined functional specifications, and provided prototype 
implementation and functional evaluation of certain Intellectual Properties (IPs). 
Among these activities, we have selected two key contributions to the RED-SEA project for inclusion in 
this deliverable. For each of them, we will summarize and evaluate it in terms of impact, technology 
readiness, complexity, cost implications, assumptions. These two contributions are: 

• IP (Internet Protocol) / Ethernet communications 
• End-to-end reliability of the transport 

2.1 IP / Ethernet communications 

Our goal in RED-SEA was to develop a high-performance low latency bridging solution between the 
HPC network fabric and the Ethernet backbone network (see Figure 1). 
 

 
Figure 1: Ethernet bridging in a data centre. 

This has been achieved with the following key architecture choices: 

- Use of standard Ethernet frames at the physical and data link layer of the Open Systems 
Interconnection (OSI) model. It means the NIC is able to build standard IEEE 802.3 Ethernet 
frames and the Switch can route them to their destination based on their destination MAC 
address. 

- Definition of an Ethernet hardware device (BXIv3 NIC named NICIA) that allows efficient 
transmission and reception of Ethernet frames over the network and exposes resources and 
interfaces to the operating system. The hardware design targets a high level of performance: 
400 Gb/s bandwidth and 220 MegaPackets/second (MP/s) rate. 

- Design of an IP / Ethernet driver that exposes an Ethernet interface to the system, supports 
standard Linux interfaces and efficiently manages IP transfers. 

- Use L3 Ethernet switches as gateways to allow connectivity and interoperability with existing 
Ethernet devices. 

In terms of realisation, a HAS (High level Architecture Specification) of the Ethernet hardware device) 
has been defined and reported in deliverable D2.1 and a prototype implementation of the Ethernet 
device has been developed and presented in deliverable D2.7. It consists of Register Transfer Level 
(RTL) code for an Agilex I-series FPGA, along with its verification environment. As shown in Figure 2, 
the main hardware components are: the IP Offload Transmission Engine, the IP Offload Reception 
Engine, the network crossbar and the Ethernet network interface. 
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Figure 2: Ethernet device hardware components. 

At the time of writing this report, the RTL code development is completed, and verification is in progress. 
The synthesis reaches the target of 400 MHz and hardware bring up has started. 
 
In RED-SEA, an IP / Ethernet software driver has been designed and developed. This work has been 
reported in deliverable D2.6. The driver has been designed to ensure a high level of parallelism with 
independent resources and zero-copy mechanism in order to reach targeted performances. It supports 
both x86 and ARM architectures and is fully integrated in the Linux network stack and Linux 
administration tools. The driver tests have been conducted using an emulated device in a virtualisation 
environment. The driver is fully functional. 
 
Additionally, the Ethernet device and the IP / Ethernet software have been integrated in an Ethernet 
bridging prototype whose goal is to demonstrate the Ethernet gateway functionality. As shown in Figure 
3, the prototype is made of: a) a compute node machine with the RED-SEA Ethernet device and IP / 
Ethernet driver; b) a L3 Ethernet switch used as the gateway, c) a service node machine with an off-the-
shelf Ethernet device. In addition, two traffic spy FPGAs have been added to capture Ethernet frames 
that comes in and out of the switch. 
 

 
Figure 3: Ethernet bridging prototype. 

The demonstrator has been used to test and validate the connectivity between the compute node in the 
HPC network fabric and the service node in the Ethernet backbone network. At the time of writing this 
report, the demonstrator uses an emulated Ethernet device in a virtualisation environment on the 
compute node. It will be replaced by the RED-SEA Ethernet hardware device (BXIv3 NIC with codename 
NICIA) when bring up activity is completed. Simple IP connectivity checks (ICMP echo request / echo 
response) are successfully tested. 
 
The Ethernet bridging solution that has been designed and developed provides a significant advantage 
compared to the bridging solutions that are being used today in HPC data centres. The bridging 
functionality is no more implemented with a gateway server that uses network adapters from both 
protocols and that performs the translation in software, copying data in memory. The new approach 
offers a higher bandwidth and a lower latency for the communications across the two networks. 
Additionally, having switches rather than servers allows higher performance scaling and reduces 
investment and exploitation costs. 
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This solution will facilitate the interoperability of HPC network fabric with other supercomputers, storage 
servers, hybrid clouds or edge servers. This is an increasing requirement with Exascale data centres 
that are not monolithic and closed systems anymore but tends to be modular systems. The solution 
opens the door to inter-cluster communications, as it provides a first step toward HPC over Ethernet 
transfers between compute nodes of supercomputers interconnected by the backbone network. 
 
The technical readiness level reached by this RED-SEA contribution is between TRL5 and TRL6. Some 
features of the technology can be demonstrated but there are still ongoing tests and potential additional 
features to develop (like TCP offload features). 
 
The technology is based on a commonly used standard (Ethernet). This will allow an easier integration 
with other technologies and tends towards a simplification compared to proprietary solutions. 
 
The solution is going to be integrated in the BXI (Bull Exascale Interconnect) product developed by Atos. 
It will be one of the two communication flows supported by the BXIv3 NIC and Switches, and it will 
provide a key feature for the BXI technology in term of interoperability. 

2.2 End-to-end reliability of the transport 

One of the main objectives of the RED-SEA is to develop the end-to-end reliability of the transport layer 
of the interconnect at scale. It means that with several thousands of servers connected to the network 
fabric, the reliability of the HPC communications between each pair of servers must be guaranteed. 
 
This objective has been achieved by designing the transport layer of the hardware device with the 
following choices: 

- handle reliability at packet level. Each message is fragmented into packets whose size is 
limited to a maximum of 9 Kilobytes. 

- have a separate management for each flow, a flow being a sequence of packets targeting 
the same target peer and having the same attributes (request or response, order and unorder, 
compute and service). The design allows to manage a large number of flows in parallel. 

- assign sequence numbers to packets. For ordered flows, packets are assigned a sequence 
number (SN) at transmission. This number is compared at reception with the expected 
sequence number. 

- track received packets with acknowledgments. When a packet is received, a control packet 
is returned to the emitter to acknowledge good reception by the peer. 

- retransmit packets upon timeout. If no acknowledgement for a packet is received after some 
time, this packet is retransmitted. 

- detect packet corruption with Cyclic Redundancy Check (CRC). Packets transmitted over 
the wire include a CRC field for its payload, and a Frame Check Sequence (FCS) field for the 
entire Ethernet frame. These two values are re-computed and compared at reception. 

 
The reliability functions have been implemented in several blocks of the transport layer of the NIC (see 
Figure 4 and Figure 5). 
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Figure 4: Reliability functions in the TX Transport 
Engine. 

Figure 5: Reliability functions in the RX Transport 
Engine. 

In the Transmission (TX) Transport Engine, the flow management block handles sequence number 
generation and packet tracking for each independent flow. The time management block takes care of 
timeout detection and triggers packet retransmission when needed. The frame builder block computes 
the CRC value and include it into the frame. 
 
In the Reception (RX) Transport Engine, the end-to-end (E2E) reliability block handles the CRC check 
and the sequence number check. In case of packet data corruption or packet duplication or out-of-order 
packet, it drops the packet. Else it generates an acknowledgement packet that is returned to the 
transmission initiator. 
 
This design has first been described in the deliverable D4.1 “End-to-end protocols and methods for 
reliability and protection: designs and functional specifications”. Then, it has been implemented and 
reported in deliverable D4.5 “End-to-end protocols and methods for reliability and protection: final 
designs and evaluations”. At the time of writing this report, the RTL code development and its verification 
are in progress. 
 
The technical readiness level reached by this RED-SEA contribution is TRL5, since technology is still 
under development. It will be possible to test and evaluate the solution within an interconnect network 
fabric in the coming months. 
 
This solution developed within the RED-SEA project is going to be integrated in the BXIv3 NIC. It offers 
a full hardware reliability of the transport layer for the Portals communications. Compared to previous 
BXI NIC generations, several aspects have been enhanced: fine-grained management of the 
transmission tracking, reduced timeout for retransmission and improved scalability within flow 
management. 
 
These features will benefit to applications and data centre services that will perform their 
communications on a more reliable interconnect network, able to scale up to several thousands of 
servers. Since reliability feature is fully managed by the hardware, the software layers can focus on 
computing and communication, providing an optimized environment for HPC simulation and AI model 
training. 
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3 Multi-Rail MPI for BXI 
A number of contributions through Multi-Processor Computing (MPC), CEA’s MPI implementation has 
been provided by CEA during the RED-SEA project, especially focusing on the optimization of point-to-
point communications for high-performance computing (HPC) applications: 

1. Improved software architecture and Portals BXI driver performance improvements.  
2. Multirail feature to improve performance on nodes equipped with multiple NICs. 

We presented a detailed account of the strategies employed to adapt MPC for better multirail support, 
significantly enhancing communication bandwidth and efficiency within MPI (Message Passing Interface) 
environments, particularly over BXI networks. These developments act as general Proofs of Concept for 
later production-ready software stacks. 
 
These enhancements are rooted in substantial improvements in MPC's software architecture, designed 
to manage multirail configurations through different algorithms across multiple NICs (Network Interface 
Cards). Within RED-SEA, we provide support for data-striping and multiplexing multirail algorithms for 
different configurations. In particular, we leveraged the offloading capabilities of BXI NICs to distribute 
message fragments. This approach aims to reduce communication overhead and optimize bandwidth 
usage. These technological advancements are substantiated through rigorous benchmarking tests, 
which confirm significant improvements in MPI communication performance, especially for systems 
integrated with BXI networks. 
 
We have tested our new implementation in BXIv2 platforms using nodes with up to 4 NICs per node. 
Note that our implementation is based on “Portals” interface of BXI and will thus be portable to newer 
versions of BXI. Figures below show the maximum bandwidth (in MB/sec) as a function of message size 
obtained by sending a message back-to-back capabilities of the BXI NIC, and finally “ompi” is the 
reference corresponding to OpenMPI implementation.  
 
Figure 6 showcases significant improvements in terms of bandwidth for small messages compared to 
previous versions of MPC when a single NIC is used which demonstrates the scaling of throughput as 
the number of NICs increases. In addition, both regular and offloading versions show promising 
performance compared to the state-of-the-art OpenMPI implementation. 
Next, comparing Figure 6 with Figure 7 for large messages (> 8kB), we demonstrate x4 bandwidth 
improvement when using 4 BXI NICs. thanks to the use of the new multirail feature, for both regular and 
offloading configurations, which demonstrates the thread optimization. 

 
Figure 6: OSU bandwidth with one BXI NIC. 
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Figure 7: OSU bandwidth with four BXI NICs. 

Furthermore, the adaptation of thread-based communications within the MPC framework has been 
performed, showcasing efforts to ensure efficient data transmission and reception through specific 
multithreaded communication strategies. 
 
These efforts also underscore the potential for more developments to enhance the robustness, 
performance and efficiency of MPI through specific BXI offloading network features. It sets the stage for 
the creation of fully offloaded collective algorithms and other sophisticated features, promising a 
significant impact on the scalability and efficiency of HPC systems. 
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4 PsPIN In-network Compute in Xilinx FPGA 
Throughout the RED-SEA project, ETH’s focus was to produce top quality research in the area of 
network offload, particularly in developing an open-source implementation of a smart Network Interface 
Card (NIC) which follows the sPIN [1] abstract machine model. We have published 17 papers so far in 
the context of RED-SEA, many of them in high-impact conferences such as ISCA, SC and CCS. 
During the project we changed from a sPIN interface which heavily borrowed from the Portals 4 API to 
an interface that is specific to sPIN and submitted it as a RED-SEA deliverable. 
We developed a Verilog implementation of sPIN on the basis of PULP Ultra-low power processing cores 
which we named PsPIN [2]. We evaluated this implementation using cycle-accurate simulations for 
multiple workloads. As shown in Figure 8, we can process most workloads at 200 Gbit/s line rate. 
 

 
Figure 8: Throughput of different workloads on PsPIN, 22nm ASIC simulation. 

At this stage of the project (we published these results in June 2021) only the sPIN specific part of the 
smart NIC was simulated and we relied on inputs from other RED-SEA partners to learn which workloads 
and communication patterns are relevant. While this technically fulfilled our minimal goals for the RED-
SEA project, we saw the need to go further and build a full-system prototype. We combined the PsPIN 
implementation with the open-source Corundum [3] NIC implementation. Figure 9 shows a block 
diagram of this implementation. 
 

 
Figure 9: Block diagram of our FPsPIN Corundum Module. 

A big drawback of the prototype shown in Figure 9 is the relatively low clock speed of the PULP cores 
when synthesizing for a Xilinx Virtex 7 FPGA of 40 MHz (compared to 1 GHz in 22nm ASIC simulation) 
and a relatively small number of eight cores (compared to 32 in 22nm ASIC simulation). This means we 
are not able to match the bandwidth numbers obtained in simulation using our FPGA based prototype. 
However, the full-system FPGA based prototype, which we named FPsPIN [4], allows us to evaluate 
the achievable overlap: the purpose of smart NICs is to lower latency and to free the host CPU of network 
related data processing tasks, thus we devised a benchmark where we simultaneously perform a matrix 
multiplication on the host CPU and unpack an MPI derived datatype on the FPsPIN NIC. We define the 
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overlap ratio as the ratio between the time taken for the matrix multiplication itself, divided by the matrix 
multiplication time combined with any polling performed by the host CPU in order to progress the MPI 
operation. As shown in Figure 10, we achieve 94% overlap even for small messages. For large enough 
messages the achieved overlap is 99%. 
 

 
Figure 10: Overlap between matrix multiplication and two different MPI datatype receives. 

The FPsPIN prototype has brought valuable insights also towards refining the sPIN specification. For 
example, for certain workloads it would be beneficial if the user could pin the processing of a stream of 
packets to a specific core, in order to exploit cache locality and avoid synchronization, while for other 
workloads allowing a maximal degree of parallelism is desired.  
 
References: 
[1] T. Hoefler, S. Di Girolamo, K. Taranov, R. E. Grant, R. Brightwell: sPIN: High-performance streaming 
Processing in the Network in Proceedings of the International Conference for High Performance 
Computing, Networking, Storage and Analysis (SC’17) 
[2] S Di Girolamo, A Kurth, A Calotoiu, T Benz, T Schneider, J Beranek, L Benini, T Hoefler A RISC-V 
in-network accelerator for flexible high-performance low-power packet processing in 2021 ACM/IEEE 
48th Annual International Symposium on Computer Architecture (ISCA’21) 
[3] A. Forencich, A. C. Snoeren, G. Porter, G. Papen, Corundum: An Open-Source 100-Gbps NIC, in 
FCCM'20 
[4] P. Xu: Full-System Evaluation of the sPIN In-Network-Compute Architecture, in ETH Zurich Research 
Collection 
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5 RISC-V Network Simulations 
Nowadays, there is a rapid advancement in the capabilities of Highly Parallel and Distributed computing 
systems, commonly referred to as HPC systems. These systems encompass a wide range of processing 
units ranging from well-known X86/ARM to modern RISC-V architectures interconnected through 
multiple networks. A significant challenge encountered by designers of heterogeneous systems is the 
lack of simulation tools capable of providing comprehensive insights beyond basic functional testing. 
Such insights include the actual performance of the nodes, accurate overall system timing and network 
deployment issues. However, in an era of complex networked HPC heterogeneous systems, simulating 
independently only parts, components, or attributes of a system-under-design is a cumbersome, 
inaccurate, and inefficient approach. 

5.1 COSSIM Framework and our approach 

In the context of RED-SEA we extend the open-source COSSIM framework which is designed to 
overcome the aforementioned constraints. The COSSIM framework effectively incorporates a collection 
of sub-tools that simulate the computing devices of the processing nodes, as well as the network(s) of 
the parallel systems. It provides cycle-accurate results by simulating the actual HPC application and 
system software executed on each node together with the actual networks employed. Specifically, 
COSSIM is built upon several established open-source packages. GEM5 is utilized to simulate the 
processing components of each node in the system, while OMNET++ is employed to simulate the real 
networking infrastructure between those nodes. In order to unify the entire framework and establish a 
common notion of time, COSSIM employs the IEEE1516 HLA through the open-source CERTI package. 

 
Figure 11: COSSIM Framework Extensions. 

Figure 11 illustrates the COSSIM simulator with all its components, interfaces and modifications. Multiple 
instances of a node simulator module (i.e., a GEM5-based module) are required for the efficient 
simulation of the numerous processing nodes of a parallel HPC. The network that binds together the 
different nodes is simulated by the network simulation module (i.e., an OMNET++ based module). 
Initially, COSSIM supported only ARM multicore processors, while during the RED-SEA project we 
extended the COSSIM functionality to support multicore RISC-V processors with RISC-V PCI 
interconnection. Although the only network interface card that has been implemented, tested, and 
verified in the publicly accessible repositories of GEM5 is the gigabit Ethernet adapter based on the Intel 
8254x, it does not enforce a bandwidth limit at all, and it can achieve more than 1 Gbps (up to 5.63 Gbps 
for ARM and 1.61 Gbps for RISC-V using 4 GHz as measured from the iperf network benchmark); the 
bottleneck is mainly the CPU on the sender side. 
In order to efficiently support real HPC applications, COSSIM is extended in the context of RED-SEA to 
simulate the workload of the parallel program in combination with the Operating System which reflects 
the interaction between the parallel program and the software environment (i.e., MPI library, etc.) and 
real network simulator. For this reason, Ubuntu 22.04 LTS GEM5 compatible images with the modern 
Linux Kernels v6.5.5 and bootloaders have been created and configured in both ARM and RISC-V 
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architectures. Specifically, we configure an OpenSBI bootloader1 binary and a modern Linux kernel 
binary that works with gem5 full system simulations in order to provide a more stable RISC-V 
environment for gem5 simulator. To be able to run a parallel computation on a network of computers via 
MPI, an MPI Cluster is set up. For this reason, the rsh server has been successfully imported into all 
gem5 nodes to be able to launch commands on remote nodes. Furthermore, MPICH v4.0 has been 
imported and evaluated inside both ARM & RISC-V simulated Operating Systems using both MPI simple 
and collective communications routines. 
In addition, COSSIM is extended to communicate with other network simulators (i.e., SAURON) through 
VEF traces to exploit more complex network topologies and cycle-accurate processing simulations with 
different ISA multicore processors (ARM & RISC-V). Specifically, VEF Prospector successfully ported 
in both ARM & RISC-V simulated OS in order to produce VEF traces. The VEF traces can be analyzed 
through Tracetor application showing the number of messages recorded in the VEF trace files (providing 
an extensive number of plots and PDF reports, with specific information about message generation, 
types of collective operations, etc.). Finally, the VEF traces can be analyzed from any other simulator 
through TraceLib in order to model the whole interconnection network providing a set of functions for 
trace reading, task mapping to end nodes, and trace execution management.  
The contribution of our work can be summarized in the following points: 

•  Development of an open-source integrated simulation framework which can simulate complete 
heterogeneous HPC Systems supporting Full System ARM and RISC-V architectures. 

•  An innovative flow to enable the designers to simulate the complete aspects of HPC Systems 
(i.e., CPU and Network Environment) through real MPI applications within one simulation 
framework. 

• The integration of VEF traces Framework to analyze communication traffic of MPI-based 
applications and generate traces that can be used to feed other network simulator tools 
(SAURON simulator). 

•  A thorough evaluation of the end system based on real-world HPCG & LAMMPS benchmarks 
using both ARM & RISC-V architectures. 

5.2 Evaluation Results 

This section presents the experimental results which were obtained in order to validate the accuracy 
and scalability of COSSIM features which developed in the context of RED-SEA using the widely-used 
HPCG and LAMMPS benchmarks. In all experiments we use a server with AMD Ryzen 9 7950X @ 4.50 
GHz with 128 GB of RAM. In our study, we create a star network topology in OMNET++, characterized 
by a central gem5 node (Node0) that is connected to all other gem5 nodes through an ethernet switch, 
thereby ensuring the centralized management of the whole simulation environment from Node0. 
5.2.1 COSSIM Accuracy 
In order to verify the correct behaviour and accuracy of COSSIM simulator the widely used HPCG v3.1 
benchmark is ported successfully in simulated OS environment on both ARM and RISC-V architectures 
and compare the results with real systems; Dibona cluster for ARM and HiFive Unmatched board2 with 
SiFive Freedom U740 SoC for RISC-V. 
First of all, we configure gem5 to simulate from 2 up to 64 ARM cores per gem5 using Armv8 processor 
@2 GHz & DDR4 memory (similar to Dibona Cluster) to verify accuracy as well as compare the 
performance which is produced. In Figure 12 we can see the HPCG performance comparison (in 
GFLOPS) between the COSSIM simulator and Dibona Cluster using 2-64 ARMv8 cores @2 GHz (in 
COSSIM simulator). In the left y-axis we can see the GFLOPS, while in the right y-axis we can see the 
performance deviation and accuracy error from HPCG execution; the performance error between the 
COSSIM simulator and Dibona Cluster is below 5%, while the accuracy error is zero. 

 
1 https://github.com/riscv-software-src/opensbi 
2 https://www.sifive.com/boards/hifive-unmatched  

https://github.com/riscv-software-src/opensbi
https://www.sifive.com/boards/hifive-unmatched
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Figure 12: HPCG COSSIM vs Dibona Comparison using 2-64 ARMv8 cores. 

In addition, we configure gem5 to simulate 4 RISC-V cores per gem5 with the same architectural 
characteristics as SiFive U740 in order to compare the performance and accuracy which are produced. 
Figure 13 illustrates the Performance comparison (in GFLOPS) between the COSSIM simulator and 
SiFive U740. As we can see the performance error between the simulated U740 in COSSIM simulator 
and real U740 is below 10% (8.3%) for 4 MPI ranks (U740 is equipped with a 4 core RISC-V processor), 
while the accuracy error is zero. In both cases (1st and 2nd column), unoptimized version of HPCG is 
used; the main reason of the performance error is that the HPCG has been executed for 761 seconds 
in real system3, while in simulated OS only 1 second due to the huge required simulation time. In 
addition, we achieve 2.7x better performance efficiency (0.504 GFLOPS) on HPCG applying compiler 
optimizations. 

 
Figure 13: HPCG COSSIM vs HiFive Board comparison using 4 SiFive U740 cores. 

5.2.2 COSSIM Scalability 
Apart from HPCG benchmark, we port LAMMPS benchmark, which is developed and updated in the 
context of RED-SEA project, on COSSIM simulator on both ARM & RISC-V architectures to measure 
and verify the COSSIM scalability on multiple nodes. We configure each gem5 node to simulate from 2 
up to 8 ARM & RISC-V cores with same architectural characteristics to compare the performance and 
VEF traces which are produced. Specifically, we configure each gem5 node processor on both 
architectures @1.4 GHz with 16 GB DDR4 memory, 32 kB L1 instruction and data caches and 2MB L2 
cache size (similar to SiFive U740 SoC). Finally, in all LAMMPS experiments 10 steps with 32000 atoms 
have been used. 
Figure 14 and Figure 15 present the Performance comparison (in timesteps/s) executing LAMMPS 
benchmark on RISC-V and ARM architectures with the same CPU specifications using up to 16 gem5 
nodes. As we can see the ARM processor outperforms approximately 140% the RISC-V processor in 
all MPI ranks using the same CPU specifications in 1 gem5 node, while the accuracy error is zero. 
Moving to multiple gem5 nodes (Figure 15), the performance gap for ARM architecture increases from 
195% to 262%. Finally, the scalability of LAMMPS benchmark ranging from 1.51x up to 1.95x doubling 
the MPI ranks for ARM architecture and from 1.31x up to 1.95x doubling the MPI ranks for RISC-V 
architecture. The main reason for the performance difference among the architectures is the bottleneck 
which is caused from the simulated CPU. 

 
3 https://www.gaborsamu.com/blog/riscv_benchmarking/  

https://www.gaborsamu.com/blog/riscv_benchmarking/


 

D1.4: Report on holistic evaluation of RED-SEA network 
technologies 

Release - Final 
 

 

© RED-SEA Consortium Partners. All rights reserved. 
 

Page 22 of 54 

 

 
Figure 14: RISC-V vs ARM Performance on LAMMPS using 2-8 MPI ranks for 32K atoms. 

 
Figure 15: RISC-V vs ARM Performance on LAMMPS using 16-128 MPI ranks for 32K atoms. 

In order to further analyze the communication patterns and overheads, we collect traces through the 
VEF traces tool to analyze the MPI communication of LAMMPS (VEF Prospector is successfully ported 
in COSSIM simulator). Figure 16 illustrates the evolution of collective operations over time (in ms) using 
128 MPI ranks (16 gem5 nodes) on RISC-V and ARM architectures. As demonstrated from this Figure, 
the number of messages on ARM & RISC-V differ in their dispersion over time, while the total messages 
and MBs are identical. This is because the ARM processor has better performance than RISC-V (Figure 
15) and it can execute more CPU instructions and MPI messages per simulated second.  

 
(a) RISC-V 

 
(b) ARM 

Figure 16: LAMMPS Evolution of Operation over time (ms) using 128 RISC-V & ARM cores. 
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6 General-purpose 100 Gb/s Ethernet MAC&PCS 
Within the context of the RED-SEA project EXTOLL developed a general-purpose 100 Gbit/s Ethernet 
MAC & PCS logical IP block. 
The IP block implements the 100GBASE-SR4 protocol as defined in the IEEE802.3 specification, which 
is intended for short-range optical connections. It uses four lanes, each operating at 25.78125 Gbit/s for 
a combined bandwidth of 103.125 Gbit/s. 
 
The block implements the following Ethernet sublayers and IEEE clauses: 

• Priority Flow Control (PFC) [IEEE 802.1Q clause 36] 
• Partial MAC Control Layer (for PFC) [IEEE802.3 clause 31] 
• Media Access Control (MAC) sublayer [IEEE802.3 clause 2 & 3] 
• Reconciliation sublayer (RS) [IEEE802.3 clause 81] 
• Physical Coding Sublayer (PCS) [IEEE802.3 clause 82] 
• Reed-Solomon Forward Error Correction (RS-FEC) RS (528,514) [IEEE802.3 clause 91] 
• Physical Media Attachment (PMA) [IEEE802.3 clause 83] 
• Physical Media Dependent (PMD) [IEEE802.3 clause 95 - SR4] 

 
The IP development focused on an ASIC implementation utilizing the EXTOLL serializer IP for 
GlobalFoundries 22nm (GF22). It will also be compatible with EXTOLL’s GlobalFoundries 12nm (GF12) 
serializer IP, once available. The ASIC version utilizes a 128/160-bit data path at an operating frequency 
of 805.67 MHz, see Figure 17. 
For the initially planned use within the RED-SEA project, an FPGA version targeting Xilinx FPGAs was 
also developed in parallel. It uses a 512/640-bit data path at an operating frequency of 201.42 MHz. 
 

 
Figure 17: 100GBASE-SR4 Ethernet MAC block level diagram. 

Both versions of the IP block, except for the serializer block, are written in fully synthesizable 
SystemVerilog code that can easily be ported to other technologies. 
The IP block was verified using a testbench written in the Specman e language using the constrained 
random Universal Verification Methodology (UVM) framework. As golden reference the Cadence 
Ethernet XT Verification IP was used to verify protocol compliance. Additionally, the FPGA version of 
the IP block was successfully tested in-system with a Xilinx FPGA against an Ethernet endpoint. 
 
The major functionality implemented within the IP block consists of the following: 

• Configuration and Status interface accessible via a proprietary interface or an AXI4 interface. 
• Transmit path functionality: 
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o FIFO transmit interface with optional clock domain synchronization. 
o Preamble insertion. 
o Frame padding to 64-byte minimum frame size. 
o Cyclic Redundancy Check (CRC) checksum calculation and insertion. 
o Inter-packet gap (IPG) insertion supporting deficit idle count (DIC) approach. 
o RS-FEC codeword formatting with parity symbol calculation and insertion. 
o Insertion of PFC MAC Control frames controlled via dedicated interface. 

• Receive path functionality: 
o Stripping of framing information (Preamble, CRC, FEC). 
o Bypassable RS-FEC symbol correction and removal. 
o CRC check and error indication (at end of frame due to streaming mode). 
o Configurable destination address check. 
o Extraction of MAC Control frames and handling of PFC frames. 
o PFC status information through dedicated interface. 
o Streaming-only receive interface (no store-and-forward). 

 
The technical readiness level reached by this RED-SEA contribution is between TRL4 and TRL5, as it 
is still undergoing verification and testing. The FPGA implementation was tested in a lab environment 
against a commercially available device. 
 
In the future this IP block can also be expanded to support backplane and copper-based standards 
(100GBASE-KR4 and 100GBASE-CR4), which, for full specification compliance, will require the addition 
of the Auto-Negotiation/Link Training (AN/LT) sublayers. 
 
The 100 Gbit/s MAC is part of EXTOLL’s IP product portfolio and aids in expanding the European IP 
eco system for interconnect technologies. 
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7 HPC Applications 

7.1 LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator)  

LAMMPS is a classic molecular dynamic engine with a focus on material modelling. It is used widely in 
several branches of science: solid state physics, computational chemistry, biophysics and many others. 
The fact that it is used to simulate dynamics for atomic (atomic gases), meso- (large molecules such as 
proteins) and continuum scale (metals), makes it a perfect codesign reference tool as it is the perfect 
benchmark for congestion analysis and network design in real-world scenarios. 
In the RED-SEA project, we ported LAMMPS to the Dibona cluster, the TGCC KNL testbed and the 
ExaNeSt-based Platform, where it was used to evaluate Accurate Congestion Control developed in 
RED-SEA. We also collected a large number of communication traces related to different configurations 
on both the Dibona cluster and the TGCC KNL cluster. The traces collected on the TGCC KNL are 
characterized by a very high number of MPI ranks, with the biggest one amounting to 32768 ranks and 
being the biggest trace ever collected with the tracing tool provided by UCLM. 
LAMMPS has also been ported to the COSSIM network simulator and the corresponding results are 
reported in Section 5 and has also been used to evaluate the traffic congestion management mechanism 
developed by FORTH (see Section 8). 
To this end, LAMMPS has been tuned to increasingly stress the network, while retaining scientifically 
relevant workload. 
  
For the collection of the traces, the physical system has been sized and modelled in LAMMPS, in order 
to have a significant computational load and the two cases which are the most significant from an 
applicative point of view have been considered, i.e., strong scaling and weak scaling. The static analysis 
of the collected traces evidenced the behaviours described in the following paragraphs. 
  
In the strong scaling setup trends can be observed both for the message size and the number of 
messages. The expected message sizes are near linearly decreasing with the number of MPI ranks 
since the size of data to be communicated is proportional to the volume of the domain. In fact, increasing 
the number of MPI tasks corresponds to linearly decreasing the volume of the domains plus some 
second order corrections proportional to the ratio between the skin size of the domain and its volume.  
The collected results are compatible with this interpretation and the change in shape of the distribution 
is due to the aforementioned higher order corrections and communication optimizations. 
  
For the number of messages, the scaling behaves differently for the communication of particle data and 
Fourier transform. Increasing the number of domains increases the number of messages for particle 
data linearly, since each domain has to communicate only with neighbouring ones.  
On the other hand, for the Fourier transform each domain must communicate with all the domains on at 
the same x, y, and z, so, for a cubic setup with N domains per side, this amounts to 3𝑛3(𝑛 − 1)  ≈  3𝑛4 

point-to-point communications. This implies that going from K processes to αK MPI processes, the size 
of the domains is scaled down by a factor α1/3, which implies that the expected number of messages 
increases by a factor α4/3. 
In conclusion, in the strong scaling setup, the messages are typically medium-sized and the size scales 
down linearly, while the number of messages scales up super linearly. 
In the weak scaling setup, the range in message sizes does not change significantly with number of 
ranks since the size of the domains is fixed.  
On the other hand, the number of messages is expected to show the same behaviour as in the 
aforementioned strong scaling case, since it depends on the number of domains and not on their size. 
  
In conclusion, the static code and traces analyses suggest that the network should be able to handle 
well small messages and in a number that scales super linearly with the number of MPI processes. The 
FFT, needed for systems characterized by long-range interactions, represents the main responsible for 
the observed scaling of the message size and therefore the major bottleneck for the parallel scaling of 
LAMMPS as a whole. 
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In Figure 18 are presented the typical distributions of messages (in terms of size) for collective 
communications (rhodopsin benchmark). The results have been computed on the Dibona cluster and 
analysed with tracing library provided by UCLM. 
 

Strong scaling, 1 node (64 MPI processes) Strong scaling, 12 nodes (768 MPI processes) 

 
Weak scaling, 1 node (64 MPI processes) Weak scaling, 12 nodes (768 MPI processes) 

Figure 18: Collective message distribution sizes for the rhodopsin benchmark. Strong scaling setup: 
2.048.000 atoms. Weak scaling setup: 32000 atoms per MPI process. 

 

7.2 DIAPASOM HPC Application 

DIAPSOM is an in-house implementation of the parallel Self-Organizing map algorithm (SOM) 
developed by eXact-lab and ported to the Dibona and TGCC KNL testbeds.  
The application, developed from scratch during RED-SEA, has been released as an open-source 
package under the BSD 4-clauses license and is available at https://github.com/exactlab/diapasom. 
 
The application (written in C++17) can be used both as a standalone executable and as a library. Four 
different implementations have been developed: a reference serial implementation and three parallel 
implementations. 
 
The first parallel implementation is an MPI-based implementation, while the remaining two are 
OPENSHMEM-based, employing respectively collective ("classic") and one-sided communication. One 
of the reasons to develop both MPI and an OPENSHMEM versions was also to analyse the trade-off 
between development time and complexity of the implementation versus performance achieved: in 
principle, OPENSHMEM should allow faster development and design, since the management of the 
memory distribution is transparent to the developer.  
On the other hand, MPI is the de facto standard for distributed computation, and the programming and 
optimization know-how is widely spread. 

https://github.com/exactlab/diapasom
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The development of DIAPASOM showed however how the allocation of buffers, the synchronizations 
and other details bring the complexity of the code to the level of the MPI implementation. 
 
For this reason, a second OPENSHMEM implementation has been developed in which one-side 
communications are employed instead of collective ("more classic") communications. 
In this way it was possible, at the same development complexity as the MPI implementation, to attain 
somewhat better performances that the ones observed with the MPI implementation. 
This gain in performance with respect to MPI is related to the fact that, employing one-side 
communications, it is possible to overlap communication and computation (at least at the receiving end), 
thus reducing the overall latency. 
As it can be seen in Figure 19, the gain with respect to MPI is not huge (around 5%) but it can still be 
considered a very good result considering the great level of maturity and optimization of the MPI 
libraries. 
  
The algorithm implemented in DIAPASOM is a variation on the original "data-partitioned batch algorithm" 
SOM algorithm (e.g., Lawrence et al., 1999) with the aim to achieve a finer control of the training process. 
This was done by introducing the concept of batch training in the SOM algorithm, and thus allowing an 
arbitrary number of updates per epoch. performing and update after each batch has been processed. 
This allows, in several situations, to reach a higher quality or the results in terms of validations and, at 
the same time, to better control the trade-off between execution time and achieved accuracy.  
An extended description of the DIAPSOM implementation has been reported in D1.2. 
  
 

 
Figure 19: Gain (%) with respect to MPI implementation. 

A wide range of runs, spanning many different configurations, has been performed on both the Dibona 
cluster and the TGCC KNL cluster. The runs, in the range 2-512 ranks on the Dibona and 2-32768 ranks 
TGCC KNL, showed good scalability MPI and OPENSHMEM implementations show minor differences, 
with no clear winner. This can be seen in Figure 19 and Figure 20.  
It is worth mentioning that the speedup in Figure 20 (second subfigure: DIAPSOM speedup up to 32768 
ranks on TGCC) is less optimal (linear) that the one related to smaller runs in big part because, in that 
situation, the DIAPASOM application had to run in a very suboptimal setup due to the fact that it was 
not possible to feed the application with database big enough to engage it from a computational point 
of view (i.e., the application had to do more communication than computation because the dataset was 
too small).  
It was not possible to eliminate this problem since the datasets needed to properly engage the 
application were too big to be created and stored on the TGCC cause of the limitations on file size of 
the cluster. 
  
The runs have been analysed using the VEF traces tools and the analysis software provided by UCLM 
and the resulting traces have been contributed to the traces repository created by UCLM and have been 
used to feed the simulator of traffic congestion. 
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Figure 20: Speedup of sample runs of DIAPASOM on different machines: TGCC KNL (1st and 2nd from the 
left) and Dibona (3rd from the left). The runs were performed using 1e9 records and 100 batches on TGCC, 
and 1e8 records and 100 batches on Dibona. 
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8 caRVnet NI & Hardware Congestion Control 
High Performance Computing deals with many aspects of our everyday life, including universe and 
climate simulations, galaxy formation, physics theory validation and others.  Low-latency, high-
throughput communication is a precious element of modern HPC clusters. However, efficient 
communication does not come for free. A common rule-of-thumb states that one 1 GHz core is needed 
in order to run the host software for 1 Gb/s (unidirectional) Ethernet-based traffic using sockets. 

caRVnet is a lean packet interconnect that we develop and advance in RED-SEA4, to verify and evaluate 
novel network technologies in actual hardware testbeds. The Network Interface of caRVnet supports 
RDMA transfers from user memory (at source) to user memory (at destination) completely bypassing 
the kernel. The caRVnet NI also offers protected virtualization through multiple descriptor channels that 
are implemented in on-chip SRAMs and can be allocated to different processes. With a custom user-
level runtime library, processes can safely initiate concurrent transfers bypassing the kernel while the 
caRVnet hardware engines dynamically allocate and release contexts for RDMA transfer descriptors at 
source and destination. The caRVnet Network Interface breaks transfers into blocks for multipath routing, 
chains blocks in flows for congestion management purposes, and multiplexes the payload of transfers 
(possibly initiated by different users) on a per network packet granularity.  A first implementation of the 
caRVnet NI architecture is currently installed in the full-scale ExaNeSt prototype interconnecting 12 
blades, where every blade consists of four (4) Quad FPGA Daughter Boards (QFDBs), or 16 Xilinx Zynq 
MultiProcessor System on Chip (MPSoC). The full testbed includes 192 ARMv8 cores and runs real 
HPC applications using a custom MPI library. 

Inside the RED-SEA project, our work on caRVnet evolved along two parallel branches. Along one 
branch, we implemented and optimized hardware congestion control (Accurate Congestion Control - 
ACC) for RDMA networks, which we tested using real HPC applications and Datacenter-inspired 
workloads (DAW) in a cluster of 16 FPGAs with advanced workload-replaying, monitoring and telemetry 
tools. Our results show that Accurate Congestion Control can minimize the flow completion time and 
protect the LAMMPS application runtime from other workloads that congest network links. 

In the other branch, we advanced the RDMA engine with low latency and advanced QoS features, 
implementing also in hardware tasks previously assigned to a co-processor (such as transfer 
segmentation and acknowledgements).  We also tightly coupled this design with RISC-V processors and 
with 100 Gb/s BXIv2 links, and ported optimized caRVnet libraries for RISC-V. Using microbenchmarks, 
we validated the hardware capabilities of the network interface, with respect to latency, bandwidth and 
throughput (packets per second) that can be exercised in small-packet workloads, such as key-value 
stores. 

Until recently, running real user-level RDMA was not possible in our RISC-V caRVnet testbeds because 
there was no IO-MMU available for RISC-V cores.  In the last months of the RED-SEA project, an IO-
MMU for RISC-V processors became available from the work of FORTH in the eProcessor EuroHPC 
project, which we integrated and tested with caRVnet, by performing user-level RDMA with virtual 
addresses between two RISC-V nodes. 

8.1 Hardware Congestion Control for High-Performance RDMA Interconnects 

The next generation of high-performance interconnects need congestion control to deal with traffic bursts 
and congestive episodes that are present in HPC and data center workloads. At the same time, 
congestion control needs to reduce the network tail latency that can negatively affect application runtime 
by eliminating needless head-of-line blocking introduced once buffers fill up. Achieving these 
requirements in interconnects with fat links and shallow buffers requires fast and accurate congestion 
control methods.  

 
4 before that in ExaNeSt and EuroEXA, European project 
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Accurate Congestion Control (ACC) computes and assigns exact max-min fair rates to network flows, 
without relying on costly per-flow states inside the network. Instead, the mechanism relies on a simple 
hardware block in front of network links, with minimal latency and hardware cost overheads. ACC was 
first proposed in the ExaNEST EU project, where it was first evaluated using computer simulation. Then, 
in EuroEXA, a first hardware implementation of ACC using hardware rate limiters was reported. 
Preliminary results also validated that the algorithm convergences to max-min fair allocation in 5-1 incast 
scenarios with bandwidth-sensitive victim flow. 

Inside RED-SEA, we implemented, evaluated and advanced Accurate Congestion Control in cluster of 
16 Ultrascale+ Xilinx FPGAs with 64 ARMv8 cores using a mix of HPC and data center inspired 
workloads. We have built a long list of hardware and software tools to further evaluate and optimize ACC 
when running real HPC applications and data center inspired workload: 
• Global Clock Mechanism, for fabric-wide telemetry. We used it to generate fabric-wide Rate Re-
evaluation Pulses (20 µs the default width) needed by ACC, but also with other monitoring tools (e.g., 
we can align timeseries captured at different links of the fabric), which helped us identify problems and 
debug our implementation, 
• Packet timestampers, capturing and registering at endpoints the fabric latency of individual packets, 
• Traffic Generator, for flexible emulation of Data center-Inspired workloads and congestive scenarios, 
by launching RDMA flows with controllable start time, size, inter-transfer gap (long term rate), 
• Flow Measurer, for per-flow monitoring of flow rates at μs scale on fabric internal and endpoint links, 
• Flow Rate Packet (FRP) Sampler, for monitoring the dynamic fair shares of flows on fabric links 
according to ACC’s emulation of max-min fairness,  
• Multiple-Priority Crossbar, in order to isolate and prioritize control traffic (e.g., Flow Rate Packets of 
ACC) as well as replies from request RDMA messages,   
• Transceiver FIFOs with Configurable Depth, in order to experiment with different network buffer sizes. 
 
Furthermore, we implemented missing critical functions inside the hardware of Contention Points (Flow-
init messages, Short-circuit mechanism) and identified and corrected a number of flaws in our first 
implementation and its integration with the caRVnet RDMA Send Engine at fabric sources.  
 
Algorithmically, we have proposed and implemented several protocol enhancements for ACC that 
reduce the flow completion time of latency critical flows and their tail latency by further controlling the in-
fabric backlogs during transients: 

• The first one is “Wait-for-feedback", which can be applied proactively to bandwidth-sensitive or best-
effort flows and constrain their source while waiting for a valid FRP-response. 

• The second method, “Mind-the-gap", detects “bottlenecked-here” flows that are misclassified as 
“bottlenecked elsewhere” during transients, reducing transient time and buffer backlogs. 

• Last, “Wait-to-rise" adopts exponential increase of bandwidth-increments after “suspicious” positive 
feedback, while waiting for it to be validated in the next RRPs; this method contributes to lower flow 
completion times by preventing backlogs, without seriously impacting background flows, as it 
converges to the target rate in a few RRPs. 

Effectively, the combined work in RED-SEA enables us to run LAMMPS HPC application (proposed by 
EXACTLAB in RED-SEA), on the 1 GHz, ARMv8 (A53) 4-core processors of the ExaNeSt-based RED-
SEA prototype and mix it with synthetic traffic emulating Datacenter workloads using the Traffic 
Generator.  We have run extensive experiments in a cluster of 16 Zynq Ultrascale+ FPGAs (1 
mezzanine), where we compare ACC with PAUSE-only fabrics, while studying the impact of: 

• Traffic conditions:  injection load, message size, transient and persistent hotspots. 
• Network buffer sizes: small 4KB and large 64KB input and output buffers. 
• Accurate tuning knobs: Link margin, Rate Re-evaluation Period (RRP). 
• Alternative congestion control policies: PAUSE-only, FRP-only, FRP-init, Wait-for-feedback, Mind-

the-gap, Wait-to-rise. 

  
Hardware testbed results show that Accurate Congestion Control can keep the excessive traffic outside 
the fabric, by throttling flows to their network max-min fair share. By reserving a small headroom 
bandwidth, ACC frees buffers and can protect the latency and the bandwidth of victim flows. ACC allows 
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new flows to inject at full speed and finds the new fair share rates after short (< 60 μs) transients when 
flows become active or terminate. Additionally, the Mind-the-gap and Wait-to-rise protocol 
enhancements are particularly tailored to minimize buffer overshoots during such short-lasting 
transients, thus further reducing the tail latency. In experiment results with victim, latency-sensitive flows, 
ACC provides up to 16x lower tail in-fabric latency under low loads and 12x lower average value under 
medium to high loads. Also, in the presence of congestive background traffic, the LAMMPS HPC 
applications run up to 3.0x faster when using Accurate Congestion Control. These results realize KPI-4 
“10x reduction in tail latency under congestive episodes relative to BXIv2. Protection of latency critical 
traffic 2x better than in BXIv2.” 

 
Figure 21: LAMMPS application (from EXACTLAB) running in the ExaNeSt-based cluster over caRVnet 
RDMA interconnect with Accurate Congestion Control and background congestive traffic. 

 
Figure 22: Experiments evaluating victim flow average and tail latency in the ExaNeSt-based cluster 
over caRVnet RDMA interconnect with Accurate Congestion Control. 

8.2 Lean network interface tightly-coupled w. RISC-V, IO-MMU and BXIv2 links 

In RED-SEA, we advanced the RDMA hardware engines for significantly better base latency and higher 
link rates. We also tightly coupled it with RISC-V cores, targeting low descriptor latency, and we also 
integrated it with the newly developed RISC-V IO-MMU from FORTH in eProcessor for virtual address 
translation. Finally, we made it compatible with BXIv2 Links using the BXI-Link IP from ATOS. The 
following list summarizes the major work items reported in deliverables D4.2 and D4.6: 

1. We designed and implemented a new hardware IP responsible for RDMA transfer segmentation 
and endpoint acknowledgements and we used it to replace a co-processor previously responsible 
for these tasks. We also advanced all caRVnet NI blocks for higher throughput and lower latency. 

2. We tightly coupled caRVnet a low-power RISC-V softcore achieving a throughput between the core 
and the NI (for descriptors) of 1 store instruction per processor cycle. We also validate that the RISC-
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V core can issue a transfer descriptor to the caRVnet network interface in less than 12 processor 
cycles. This achieves KPI-6 “A few (<12) cycles one-way latency from processor to the Network 
Interface.” 

3. We ported caRVnet systems software (drivers and user-space library) from ARM-based systems to 
RISC-V- based ones and we optimized the library for ultra-low latency and low CPU overheads. 

4. We ran ping-pong tests with the Packetizer-Mailbox user-level library between two nodes containing 
Ariane RISC-V soft cores running at just 100 MHz, achieving a user-level latency of 720 ns (just 72 
processor cycles, 20 of which are spent in SERDES) and present a detailed breakdown of user-
level communication across two RISC-V cores. 

5. We evaluated the RDMA performance in a testbed of Xilinx VCU FPGA nodes with RISC-V softcore 
processors running at 100 MHz. The RDMA latency is now below 0.5 μs from 4 μs that was 
measured before using a faster 1 GHz ARM core, and the link throughput from 20 Gb/s to 100 Gb/s.  
We also evaluated the Packets per second throughput performance of the caRVnet RDMA finding 
that the hardware can reach up to 1 packet per 4 processor cycles (25 MP/s with the 100 MHz RISC-
V in our prototype) using well-tuned user-level programs. These results contribute to KPI-10 “Improve 
by 2x the network transactions per second in Key-Value store Benchmark.” 

6. Scaling the throughput performance in workloads with small messages is a challenging task. In 
RED-SEA caRVnet moved to a full hardware implementation, including pipelining to process 
transactions at hardware clock speed, as required for high-throughput links. 

Inside the RISER project, we continue to enhance the caRVnet RDMA-capable Network Interface. So 
far, we have designed a hardware engine to handle timeouts and negative acknowledgements in RDMA. 
We are currently working on 100 Gb/s Ethernet link interfaces and on a cache-coherent interface with a 
RISC-V ASIC that will become available later in the project. 

 

Figure 23: Ariane RISC-V core initiating an RDMA transfer to caRVnet Network Interface using four (4), 
back-to-back 64-bit store instructions. The HW engine generates the first read to DRAM 10 cycles later. 
The IO-MMU from FORTH in eProcessor is leveraged to translate the virtual address to physical, 
performing a page-table walk as this is the first access to a virtual page from the network interface. 

 
Figure 24: Xilinx VCU testbed integrating Ariane RISC-V core, caRVnet Network Interface, IO-MMU 
from FORTH in eProcessor and BXIv2 link. This testbed was used to produce the result shown in the 
figure above. 
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9 APENetX Network Interface and Simulations 
INFN activity in the RED-SEA framework unfolds along two lines: 

• adopting a co-design approach in support of the network design activities (WP1) by contributing 
with the NEST application. In the first phase of the project, the co-design loop is started 
employing applications to extract requirements and specifications of the network architecture 
while in the second phase the co-design iteration is closed porting the applications onto the 
project evaluation platforms. 

• designing and implementing the PCIe-based network interface card APEnetX – prototyped on 
Xilinx Alveo FPGAs (WP4) to allow for low latency communication between CPU, interconnect 
device and GPU accelerators - and sporting a BXIv2 link layer hardware block for seamless 
integration in BXI environment. 

In summary, INFN activities in RED-SEA focused on the development of a network interface card and 
related network IPs, mainly targeting the communication generated by spiking neural network 
applications. 

9.1 Co-Design through application 

We performed an extended analysis of the NEST application running on the DIBONA testbed and 
exploiting the VEF traces toolset to provide recommendations for the network architecture. The sampled 
NEST simulation describes the dynamics – called Slow Waves Activity – that the cortex of one brain 
hemisphere of a mouse undergoes when in a deep sleep state and whose connectome was obtained 
with Wide-Field Calcium high resolution imaging techniques. The parallelization scheme followed by 
NEST simply assigns neurons to different ‘virtual processes’ in a round-robin fashion, whereas a virtual 
process is one core of the platform the simulation is run on; if the code is launched asking for x MPI 
processes – however they may be spread across the interconnected nodes of the system – and for y 
OpenMP threads – however many may be available on the CPU architecture of the node and allocated 
by the user according to the scheduling policies of the system – the virtual processes are x×y, each of 
which computes the evolution of a corresponding fraction of the grand total of neurons. 

The analysis of the simulation time and network traces highlights two main behaviors: 

1. The total amount of OpenMP threads should not exceed the grand total of 32. 
2. The NEST simulation could be distributed on a maximum of 64 MPI processes. Beyond this 

upper limit the huge number of generated messages and the reduced size significantly affect 
the performance of the adopted interconnect. 

 
Figure 25: NEST built-in timers analysed with VEF-TraceLIB with respect to the number of processes 
for a fixed number of nodes and threads. 

The limitation running over 64 MPI processes is analyzed in depth exploiting information contained in 
the built-in accurate timers of the latest version of NEST, to improve the results about the communication 
generated by the simulation and to confirm the results obtained using the VEF traces tool.  
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Focusing on the 3 cases reported in Figure 25 it is possible to notice that time gather spike data (time 
for complete spike exchange) decays up to 64 MPI processes and increases with the number of 
processes, disregarding the number of threads and nodes, becoming a bottleneck in the speedup of the 
system as supposed during the analysis based on the VEF-traces results. 

Finally, the details of the NEST strong scaling results are reported in Table 1. As expected, distributing 
the application on the largest number of available nodes achieves the best performance. The simulation 
scales properly up to 16 cores (2 cores and 1 MPI process per node). The not ideal scaling obtained 
with 8 MPI process (and even worst with 32) suggests optimizations also for messages in the range of 
512B – 16kB as reported in Table 1. 

Number 
of nodes 

MPI 
processes 

OpenMP 
threads 

ARM 
cores 

Simulation 
time[s] 

Ideal 
[s]  

deviation Speed 
up 

1 1 1 1 2390.71 2390.71 0.00 1.00 
2 2 1 2 1180.21 1195.35 -1.27 2.03 
4 4 1 4 586.45 597.68 -1.88 4.08 
8 8 1 8 292.39 298.84 -2.16 8.18 
8 8 2 16 152.50 149.42 2,06 15.68 
8 8 4 32 80.45 74.71 7.68 29.72 
8 8 8 64 44.13 37.35 18.12 54.18 
8 8 16 128 25.35 18.68 35.71 94.32 
8 32 8 256 17.11 9.34 83.19 139.75 
8 32 16 512 12.54 4.67 168.56 190.65 
11 44 16 704 11.27 3.40 231.87 212.13 

Table 1: NEST strong scaling results. 

From a co-design perspective, in addition to the use of application traces for the network design, the 
described analysis, implemented by INFN during the project (scaling analysis, implementation of 
counters and pointers in the code), represents a useful methodology to guide the effective optimization 
of the code on the platform. 

9.2 APEnetX: the INFN network interface card 

INFN APEnetX is a low-latency and high-throughput NIC based on a PCIe Gen3/Gen4 interface 
designed to increase the capability of the network and compliant with off-the-shelf clusters. 

9.2.1 Architecture 
The NIC was prototyped on Xilinx Alveo boards. In the first half of the project, we used Alveo U200 
boards – these offer a PCIe Gen3 interface – but we procured a few PC servers sporting PCIe Gen4 
slots to validate the architecture on devices equipped with a x16 Gen4 PCIe module like the U280 and 
therefore exploit an enhanced interface towards the host system. 

As shown in Figure 26, APEnetX architecture leverages on the combination of (i) the network IPs 
(APErouter and APElink) developed during the ExaNest and EuroEXA projects, (ii) the embedded DMA 
engine and transceivers of the Xilinx FPGA board, (iii) the APEni providing Host-to-Card (H2C) and 
Card-to-Host modules to manage the data transmission towards the PCIe interface, and (iv) the register 
interface to manage configuration and status registers.  

In RED-SEA we focused on the development and deployment of a proprietary Network Interface (APEni) 
compatible with the embedded DMA engine of the Xilinx. The APEni interfaces with the DMA engines 
available in the Xilinx Device to encapsulate data in the INFN-proprietary format feeding the network. 
APEni supports RDMA semantics to manage user-level, zero-copy RDMA data transmission to/from the 
user memory offloading the kernel system. In the current implementation,the virtual memory is managed 
through the IOMMU of the Intel processor for the implementation of the direct I/O. To support the DMA 
read/write process INFN provided a complete software stack customizing the Xilinx one, adding as small 
a set of modifications as possible to be compliant with future releases by the vendor. We provided a 
user-space library (LIBQCM) between user-space application and the Linux device driver; this 
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component is used to prepare the data structures used in the IOCTL syscall and to implement the 
optimization we made to bypass the user-space to kernel-space context switch. 

 

Figure 26: APEnetX architecture and software stack. 

Several optimizations and advanced custom mechanisms were implemented to enhance the 
performance and comply with the requirement of optimizing the transmission of low-size messages: 

1. Direct Completion: having user-space completion management, the nodes involved in the 
communication exchange information on the completion virtual addresses during the initial 
handshake. This allows bypassing the device driver kernel module in the receiving phase, while 
the receiver user process polls on its completion address. 

2. User-Space Completion queue remap: the completion queue (integrated in the C2H queue) 
memory area is remapped into user-space, to make it accessible directly from the user 
application. 

3. Payload in completion: we can exploit up to four reserved 64-bit words (32B, small packet 
optimization) of the “completion” data structure to transmit a payload small enough to fit instead 
of pointing to data written elsewhere in memory. 

4. Fast Send: The Linux device driver is completely bypassed by the user-level library, which uses 
the AVX512 instruction set extension to do an atomic write directly to the hardware shared 
memory (PCI BAR4). 

9.2.2 OpenMPI on APEnetX 
Furthermore, INFN developed a Byte Transfer Layer (BTL) component that can be instantiated by the 
Modular Component Archictecture (MCA) framework of OpenMPI to use the APEnetX NIC for MPI data 
transmission. For APEnetX we choose OpenMPI, being open source, portable and widely deployed in 
the HPC world. The support of GPU memory transfers requires the so-called NVIDIA GPUDirect RDMA 
feature. This is available from Kepler-class GPUs onwards and allows us to enable a direct path for data 
exchange between the GPU and ApenetX device over PCI Express.  
In Figure 27, we report results for (i) the INFN proprietary synthetic latency and bandwidth tests, (ii) the 
de-facto standard tests of the OSU Micro Benchmarks suite, (iii) two synthetic tests to move data from 
GPU memory to CPU memory and back from CPU memory to GPU memory on the same host (local-
loop). The testbed is composed by two Supermicro X13SEI-F servers equipped with one Tesla P100 
GPU and one NVIDIA A100. As can be seen, all the operations involving GPU pinning and locking (when 
the source of the data is the GPU memory) incur more overhead in terms of latency. 
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Figure 27: Test were carried out between two Supermicro X13SEI-F servers equipped with Intel Xeon 
Silver 4410T processors. 

9.2.3 APEnetX in BXI environment 
The integration of APEnetX in the BXI environment required the integration of BXI link layer. The BXI 
link layer firmware provided by ATOS as an encrypted module was first ported onto the the APEnetX 
prototype (Xilinx Alveo U200) and, subsequently, an adapter between the BXI and APEnetX 
communication protocols was designed and implemented. We measured the latency between two 
boards by performing a pingpong_test (Figure 28) to assess the performance of the present BXI link 
integration into the APEnetX design. 

 

Figure 28: APEnetX+BXI integrated Platform design and its host-to-host link latency. 

9.2.4 APEnetX simulator 
We implemented a simulator based on OMNet++ to evaluate APEnetX performance at large scale. The 
INFN simulation library is composed of several modules which can be combined to build a network node: 

• The Buffer provides the FIFO functionality needed to implement transmission channels.  
• The Channel logic implements the functionality of the APElink. 
• The Consumer interface to the receiving (RX) FIFO which pops all messages in the RX queue 

as soon as they are available. 
• The Producer interface to inject packets to the transmitting (TX) FIFO. 
• The Router has all the required gates to connect with an arbitrary number of external ports 

using Channel logic modules and an arbitrary number of internal ports using Consumer or 
Producer and Buffer modules. 

An example of a network node built using the modules provided by the INFN simulation library is in 
Figure 29 (left) that has two external channels with two virtual channels each and one internal channel.  
The APEnet simulator (DQN_SIM) proved to be a useful porting platform for MPI applications. In Figure 
29 (right), the throughput of the NEST application within the simulator is plotted. The NEST application 
is composed of two phases, a building phase, and a simulation phase, during which most of the traffic 
is produced. Since the INFN interest is focused on the traffic pattern of the application, Figure 29 (right) 
depicts only the working phase. As expected, the working phase shortens as the number of MPI ranks 
increases; in the ideal case the simulation halves its runtime when doubling the MPI ranks, provided 
they are assigned to different cores. Such behavior is confirmed by the APEnetX simulator. 
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Figure 29: Example network node and simulated time of the NEST traces injected in the APEnetX 
simulator (DQN_SIM). 
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10 Parastation MPI and Gateway for BXI 
In the RED-SEA project, the main goal in Task 4.5 for ParTec is to extend ParaStation MPI to enable 
the utilization of BXI networks within computing clusters following the MSA approach and to optimize 
one-sided communication semantics in ParaStation MPI on top of BXI. 
The ParaStation MPI communication stack is a central pillar of ParaStation Modulo, a comprehensive 
software suite especially designed for MSA systems. ParaStation MPI is an MPICH derivate integrating 
its low-level communication layer pscom at the ADI3 layer (see Figure 30). The pscom library enables 
point-to-point communication among the MPI processes and abstracts the hardware with a variety of 
plugins supporting different interconnects and interfaces relevant to the HPC domain, e. g., InfiniBand, 
UCX, Extoll, and OmniPath. The natural way for adding support for BXI to the ParaStation MPI 
communication stack is to add an appropriate plugin to the pscom. 

 
Figure 30: The architecture of ParaStation MPI: The pscom is used to implement the psp layer (b) for 
an integration into the general MPICH software stack (a) as an ADI3 device. BXI support is implemented 
by adding a pscom plugin with a layered architecture (c). 

Our work mainly focused on the following tasks: 

• The low-level communication layer pscom is extended by adding a plugin for BXI support. This 
enables the utilization of BXI networks on high-performance systems following the MSA 
approach. 

• One-sided RMA communication is extended and optimized in pscom on top of BXI. This enables 
MPI and PGAS programming models the efficient use of BXI-based RMA operations and one-
sided communications through the use of pscom. 

• The transparent bridging capabilities offered by pscom are further extended by the support for 
BXI interconnects. This allows MPI applications running on top of a heterogeneous network 
landscape using BXI among other high-speed interconnects. 

10.1 Design and Implementation of the pscom4portals Plugin 

The pscom4portals plugin is implemented with the Portals 4 API to leverage the BXI hardware. Similar 
to other pscom plugins, this plugin is logically divided into two layers (Figure 30(c)): the upper layer 
implementing the interface to the hardware-independent part of the pscom and the lower psptl layer 
implementing a point-to-point communication channel by leveraging the Portals 4 API. 
The main purpose of the upper layer is to implement the handshake mechanism of the pscom. During 
the handshake procedure, the pscom4portals negotiates and exchanges between two peer processes 
the required endpoint information for communication, i.e., the Node ID (NID) and the Process ID (PID) 
provided by the Portals 4 API. Additionally, this layer provides the necessary callbacks for sending and 
receiving data over pscom4portals connections. 
In the lower psptl layer, both the Eager and the Rendezvous communication protocol are implemented 
separately by allocating dedicated Portals Table Entries (PTEs). The rendezvous communication builds 
upon an RPUT protocol utilizing RMA write operations. Depending on the message size, the plugin 
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decides which communication protocol is used. Users can change the threshold of message size to 
switch the communication protocols by setting the PSP_PORTALS_RENDEZVOUS environment variable. 
The BXI support in ParaStation MPI has been preliminarily evaluated on two hardware testbeds: (1) the 
Dibona system and (2) the DEEP system. Figure 31 presents the communication throughput obtained 
with both ParaStation MPI and Open MPI on the DEEP system. The preliminary evaluation results show 
that the performance of ParaStation MPI is aligned well with Open MPI for large message sizes. There 
is still room for optimization and improvement for the latency of small-sized messages. 

  

Figure 31: The BXI throughput and latency of ParaStation MPI compared to Open MPI on the DEEP 
system. 

10.2 Extension of RMA capabilities in pscom4portals plugin on top of BXI 

The RMA support provided by pscom is implemented based on the same layered architecture in the 
pscom4portals plugin. Furthermore, the implementation builds upon the re-design of pscom’s RMA 
interface that was developed in the context of the DEEP-SEA project. It enables the efficient execution 
of both MPI one-sided communication operations and PGAS workloads on top of a single low-level 
communication layer, thereby improving the composability of different programming models within MSA 
systems. 
The RMA implementation in the pscom4portals plugin layer supports the pscom RMA interfaces, 
including memory region registration, RMA communication, and synchronization. This is realized by 
leveraging the one-sided communication operations offered by the Portals 4 API. To register a memory 
region in the pscom4portals plugin, a Matching List Entry (ME) with specific match bits is created by 
calling PtlMEAppend. The specified match bits, Process Identifier (PID), and Portal Table Index (PTI) 
are packed into the remote key buffer and used to generate a remote key to access the registered 
memory region. RMA communication operations (i.e., put, get, and atomic operations) have been 
mapped onto their Portals 4 counterparts PtlPut, PtlGet, PtlAtomic, PtlFetchAtomic, and PtlSwap 
in the pscom4portals plugin. The support for RMA synchronization within pscom4portals is realized by 
using light-weight Counting Events (CEs) of Portals 4. 
The preliminary evaluation of the native RMA support provided by the pscom4portals plugin is conducted 
on the DEEP system. This analysis compares a new implementation of MPI one-sided communication 
leveraging the new RMA interface of pscom with an old implementation based on two-sided 
communication semantics in ParaStation MPI. The newly implemented pscom RMA API using Portals 
4 on top of BXI shows important performance improvements compared with the former two-sided-based 
implementation in ParaStation MPI. Figure 32 and Figure 33 show that a latency reduction of approx. 
30% for MPI_Put and MPI_Accumulate and 60% for MPI_Get for small messages (≤ 1024B) with the 
new implementation is obtained. This is achieved by using hardware-accelerated RMA and a light-
weight synchronization mechanism. We also observe a significant latency reduction up to 80% for MPI 
atomic operations, such as MPI_Get_Accumulate as shown in Figure 33. This is due to an internal lock 
within ParaStation MPI that is required to guarantee the atomicity of the two-sided-based approach. 
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Figure 32: Comparison of Latency of MPI_Put (left) and MPI_Get (right) communication based on 
hardware acceleration and two-sided communication semantics for OSU one-sided micro 
benchmarks. 

  

Figure 33: Comparison of Latency of MPI_Accumulate (left) and MPI_Get_accumulate (right) via 
pscom RMA API and the two-sided RMA communication in ParaStation MPI for OSU one-sided micro 
benchmarks. 

10.3 Transparent Network Bridging 

The pscom4portals plugin in conjunction with pscom’s gateway capabilities enables the transparent 
bridging to and from the BXI network. This way, MSA systems with a heterogeneous network landscape 
can run MPI applications across multiple modules, even if they use different underlying interconnection 
technologies including BXI. 
The DEEP system is used as the testbed for evaluating ParaStation MPI’s network bridging capabilities 
to/from BXI. The DEEP system contains cluster nodes connected via IB and four nodes attached to the 
BXI high-speed interconnect. A preliminary throughput analysis of the network bridging between a 
cluster node and a BXI node on the DEEP system has been conducted by running the osu_bw 
benchmark and shown in Figure 34. This preliminary evaluation of pscom’s network bridging capabilities 
demonstrates its viability for MSA systems using BXI among other high-speed interconnects. 
Performance improvements can be expected by implementing further optimizations especially w.r.t. to 
the tuning of plugin-specific parameters. 
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Figure 34: A throughput analysis of the network bridging between InfiniBand and BXI on the DEEP 
system. 
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11 HPC Network Simulations and Applications 
Communication Characterization 

This section describes the framework used and extended in the RED-SEA project to characterize, 
model, and simulate the communication patterns of representative computing- and data-intensive use 
cases. First, we describe the open-source VEF traces framework that characterizes and models 
representative communication patterns. Next, we detail how this framework has been used to gather 
traces in real use cases. We have performed several analyses on these traffic patterns to characterize 
network congestion by directly analyzing the information recorded in the obtained traces and through 
simulations using those traces as input. 

11.1 Simulation framework description 

Simulation is widely used to model the network functionality and evaluate its performance under specific 
communication patterns generated by the system end nodes when running specific workloads. It is 
essential to characterize these communication patterns, which will help identify bottlenecks and 
undesired situations in the interconnection network. Therefore, network simulation tools should be fed 
using realistic network traffic models, from real benchmarks or applications. This approach has grown 
in popularity since it permits analyzing the network behavior under realistic traffic situations. 
 

 
Figure 35. Diagram of the proposed traffic-modeling framework. Text squares in yellow show the 
applications and tools of the VEF Traces framework. 

To characterize specific communication patterns and analyze their impact on the network performance, 
we have developed an open-source framework, called VEF Traces, which allows for i) instrumenting 
MPI-based applications communication and recording this communication in traffic traces, ii) modeling 
realistic network workloads based on the information of their communication patterns made publicly 
available by HPC systems and Data-center users, iii) reproduce the mentioned communication patterns 
in any third-party simulation tool, and iv) perform different types of analyses (static and dynamic) using 
the characterized communication patterns. Figure 35 shows a general overview of the workflow of the 
VEF Traces framework, including the most important tools (in yellow) available. 
 
Specifically, the VEF traces framework permits recording the communication operations behavior of 
parallel applications run in HPC clusters into traffic traces. These applications are commonly based on 
the Message Passing Interface (MPI) programming model, so we would need to run the selected 
application in a real HPC cluster and use the VEF Prospector tool to record its communication pattern 
into a VEF trace. This tool leverages the profiling MPI (PMPI) library to capture the MPI calls (either 
point-to-point or collective) generated by each MPI rank. The PMPI information per MPI rank is stored 
locally at every node in the cluster, and later it is combined using the vef_mixer tool into a single VEF 
Trace. Although trace instrumentation is a reliable way of modeling communication operations, the main 
problem is its lack of scalability. It is not trivial to reproduce the behavior of a VEF trace, which has been 
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gathered in a HPC cluster using a given number of MPI ranks, significantly higher than that of a given 
VEF trace. 
This section describes how we have used the VEF traces framework combined with the SAURON 
simulator to characterize the communication patterns and congestion in high-performance 
interconnection networks. As it has been described in previous deliverables (such as D1.3), the 
SAURON simulator has been widely used and tested in the last decade to model specific interconnection 
network architectures (e.g., InfiniBand or BXI). During the RED-SEA project SAURON has been 
extended (mainly with the work carried out in WP1) to model the BXIv3 architecture, and to model new 
proposals for network resource management (designed in WP3). This work has contributed to KPI #2 
and #8, since we have achieved to simulate interconnection networks communicating up to 115K 
endpoints, so these KPIs related to scalability and network topology have been partially achieved thanks 
to the mentioned simulation framework. In the following sections, we describe a real use case in which 
we have used the VEF traces framework and the SAURON simulator to model and characterize 
communication and congestion in high-performance interconnection networks. 

11.1.1 Static analysis of VEF traces 
The VEF traces framework also provides a set of scripts, called off-line scripts, that allow to perform a 
static analysis of the communication operations, which involves looking at their type (P2P or collective), 
calls number, number of generated bytes, source and destination end-nodes involved in the 
communication, etc. These scripts generate a large set of plots depicting these metrics, which also can 
be gathered in a single file report. 
In RED-SEA we have promoted different cross-collaborations with other partners, both within this project 
and from other projects (e.g., DEEP-SEA, IO-SEA or MAELSTROM), intended to generate a large set 
of VEF traces based on real use-cases, which can be used to feed network simulation tools and measure 
the impact of different communication patterns on the network performance. We have created a public 
repository5 to store the obtained traces. We have also performed a static analysis of all the obtained 
traces and uploaded one report per trace stored in the repository. Although we have gathered traces 
from multiple applications, in the following we show one representative example of a specific application 
from the EuroHPC-JU funded MALESTROM project. 

11.1.2 Dynamic analysis of VEF traces 
To reproduce the applications' recorded behavior into the VEF traces, the proposed framework provides 
a software library, called TraceLib, which can be invoked in any simulation tool to read the trace records 
and generate the corresponding communication messages into a simulated network environment.  
Functions of this library are also invoked when messages are received at end nodes, so the 
dependencies that could appear between different messages can be resolved. 
Finally, the network simulation is fed using VEF traces and should provide a set of performance metrics 
that allow the simulator users to understand the communication pattern behavior in the network these 
metrics could, for instance, provide information about network bottlenecks, reliability issues, power 
consumption, etc. The analysis of these metrics using the results of simulation experiments is referred 
hereafter to dynamic analysis. 

11.1.3 BXIv3 modeling in the SAURON simulator 
The BXIv3 network technology model in the SAURON simulator has been performed in the network 
interfaces and switches. The idea of this model is to abstract the most crucial details from the BXIv3 
specification and model them into SAURON with a proper granularity level, bearing in mind Scalability, 
since we need to simulate more than 100K endpoints using a single BXIv3 fabric. Further details of the 
BXIv3 switch model have been described in deliverable D1.3. 
Regarding the BXIv3 NIC modeling in SAURON, we assume the NIC output ports to operate in the same 
manner as switch output ports. These output ports at NICs are organized in VCs and are flow controlled 
from switches using the PFC algorithm. We assume that NICs are plugged to PCIe in the endpoints so 
applications generating communication operations request a user space buffer in the RAM memory of 
a given host. This buffer requests access to the NIC at the transport level, which allocates a specific 
generation queue for that user-space buffer. In manner, the user space buffer is divided into smaller 

 
5 https://gitraap.i3a.info/jesus.escudero/vef-traces-repository 

https://gitraap.i3a.info/jesus.escudero/vef-traces-repository
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packets, according to the network MTU (Maximum Transmission Unit), which are finally moved to the 
NIC output buffer and injected into the network. Note that this model permits that each user space buffer 
is allocated to a single generation flow, so different user space buffers can be associated to different 
generation queues at the same host. In this manner, we avoid starvation in the traffic generation of 
different applications in the same host that request the same NIC. 

11.2 Evaluation results using the simulation framework 

Although the SAURON simulator provides a wide set of metrics, the most useful for this analysis are the 
execution time, the Flow Completion Time (FCT) and the cumulative distributed function (CDF) for the 
NEST, GROMACS, LAMMPS and PATMOS VEF traces, when used to feed the SAURON simulator. 
The configured scenarios are a 288-node Dragonfly+ topology (a.k.a., Megafly) and a 256-node fat-tree 
topology. Specifically, Figure 36 and Figure 37 show the execution time for these applications when 
using two different switch architectures: BXIv3 and BXIv2. As we can see there are small differences 
since the amount of traffic in the network generated by these traces is small and these traces do not 
generate excessive contention. 

  
Figure 36: Traces Run Time in a 288-node 
MegaFly. 

Figure 37: Traces Run Time in a 256-node 
FatTree. 

However, we can observe that BXIv3 always obtains significantly lower FCT values than those obtained 
by BXIv2, due to the former technology processes the flows faster in average (see Figure 38, Figure 39, 
Figure 40, and Figure 41). This means that the processing time at the nodes is dominated by the 
computing times stored in the trace file, which depend on the node architecture used to gather the 
specific VEF trace. 

  

Figure 38: Mean FCT in 288-nodes MegaFly. Figure 39: Mean FCT in 256-nodes FatTree. 
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Figure 40: Max. FCT in 288-nodes MegaFly. Figure 41: Max. FCT in 256-nodes FatTree. 

Finally, Figure 42 shows CDF results using the SAURON simulator when a LAMMPS application has 
been used to feed a 128-node network configuration using a fat-tree topology. LAMMPS traces have 
been configured with 128 MPI ranks and run using the COSSIM simulator. In this environment, 
EXAPSYS has gathered two VEF traces, one configuring COSSIM to simulate ARM processors in the 
server hosts and the other using RISC-V processor. We have used these traces to feed SAURON, which 
has been configured using the BXIv2 and BXIv3 network models. As we can see the BXIv3 network 
model obtains significantly better results compared to those of the BXIv2 one. 

 
Figure 42: Cumulative Distributed Function (CDF) of a different LAMMPS Traces (128 MPI Tasks) 
collected by Exapsys in a simulated environment using COSSIM simulator and using two different CPU 
processors (ARM and RISC-V). 

11.3 Scalability study 

Finally, we have performed scalability experiments of the SAURON simulator model to test that the 
BXIv3 model operates under different amounts of traffic workloads when using thousands and hundreds 
of thousands of nodes. Figure 43 shows the experiments results of a 16K-node fat-tree network when a 
synthetic traffic pattern is injected in the network and different traffic loads are used. Note that the 
synthetic traffic pattern is based on network end-nodes generating an all-to-all communication pattern. 

 
Figure 43: 16K-nodes – Normalized Throughput – BXIv3 vs IB QDR. 

As we can see in this figure, the BXIv3 network model operates the InfiniBand network model when 
traffic loads exceed the 60% of the network capacity. 
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Figure 44 and Figure 45 show the experiment results that demonstrate one of the most relevant 
milestones achieved in the SAURON simulator development: the possibility of simulating 
interconnection networks of more than 100K-node, as defined by KPIs #2 and #8 of the project. 
Specifically, these figures show the experiment results when generating a synthetic traffic pattern in a 
network configuration based on a 114K-node Dragonfly topology when used in BXIv2 and BXIv3 
networks. Note that this size is not possible for BXIv2 networks, which can only interconnect up to 64K 
end nodes. Moreover, this size cannot be neither achieved by regular BXIv3 networks, unless level 3 
routers are used to interconnect two 64K fabrics, which is expected to be done with BXIv3 networks 
thanks to the Modular Supercomputing Architecture (MSA) approach. 

 

  

Figure 44: 114K-nodes - Throughput vs Load. Figure 45: 114K-nodes - FCT vs Load. 
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12 Congestion Characterization and Control 
UPV has enhanced Sauron simulator in several ways to undertake the tasks of work package 3, 
therefore the improvements are closely linked to tasks 3.1, 3.2 (optimization of collectives 
communication primitives) and 3.4 (inter-application interference). 

12.1 Dynamic analysis using VEF Traces 

UPV has designed plots to show the occupancy of the queues in the network to characterize congestion 
in the network as a previous step to propose congestion reduction techniques in WP3. We use two types 
of these plots in D3.1. 
Figure 46 shows the queue occupancy evolution per time interval. Each colour represents a different 
network switch. For each switch, we show the highest queue occupancy of the queues (i.e., the highest 
number of busy queue entries) of that switch. The queue occupancies of the different switches are 
shown stacked. The maximum queue occupancy for a port is 32. As can be seen, there are time intervals 
with a high occupancy of the switch queues, especially at the beginning of the trace. This congestion 
corresponds to the initial part of the trace where we observed a high network latency and low transferred 
traffic. This means that there is congestion in the network and that the packets are stopped without 
being able to advance through the network. 

 
Figure 46: Queue occupancy (number of packets in the queue) evolution along time in an 8-ary 2-tree 
for the whole LAMMPS trace with 64 tasks. Each colour represents a different network switch. Details 
are zoomed in the next figure. 

Figure 47 is a zoom of the previous where more details can be observed. 

 

Figure 47: Zoom of Figure 46. Queue occupancy evolution along time in an 8-ary 2-tree for LAMMPS 
with 64 tasks. Each colour represents a different network switch (there are 16 switches). 
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The same information is also represented in Figure 48 in a different way. In this plot, the occupancy of 
each switch (the most occupied queue of the switch is shown) of the network is represented vertically, 
according to a color scale, while the evolution of the occupancy over time is represented horizontally. In 
the fat-tree, the second stage switch queues are much less used than the ones from the first stage. In 
these plots we can see that the switches of the first stage are more used than the ones of the second 
stage. 

 
Figure 48: Queue occupancy evolution along time in an 8-ary 2-tree for LAMMPS with 64 tasks. 
Vertically all the switches of the network are represented and horizontally how the occupancy evolves 
over time. 

12.2 Topology-aware CCP optimizations in TraceLib and in Sauron 

In T3.2 we address the optimization of the algorithms that implement the collective communication 
primitives and to model them we use TraceLib jointly with Sauron. 
TraceLib is an open-source library designed to replicate VEF traces behaviour within interconnection 
network simulators. In particular TraceLib model the behaviour of the algorithms present in the MPI 
libraries to implement the collective communication primitives. In RED-SEA we have enhanced TraceLib 
to model several topology-aware algorithms defined in T3.2 that implement the broadcast primitive. They 
are the LLF (Local Link First) and GLF (Global Link First). These algorithms are two software 
optimizations based on the knowledge of the topology and are explained in detail in D3.3.  
 
Additionally, in the switches of Sauron we model a hardware assisted mechanism to optimize broadcast 
primitives. They are based on multicast routing. That is the Sauron simulator has been enriched to model 
the assistance from hardware to the implementation of CCP. 
 
In Figure 49, we can see the execution time required to process 100 broadcasts (the complete evaluation 
of these implementation is done in D3.3) of 1 MB each. It is shown for a traditional implementation 
(binary-tree) and the three topology-aware implementations (HW, LLF and GLF) proposed in WP3. As 
can be seen, the three topology-aware algorithms are able to reduce the execution time, that is, they 
are able to process the 100 broadcasts faster than the binary-tree algorithm. As can be observed, the 
hardware mechanism is the implementation with the shortest execution time (it is able to reduce to a 
fifth the time obtained by the traditional algorithm, binary tree; it provides a speedup of more than 400%), 
followed by LLF (it is able to reduce less than half the execution time of the traditional algorithm, the 
speedup is bigger than 130%), GLF and being the traditional implementation the algorithms that gets 
the worst result. 
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Figure 49:  Execution time for 100 1-M broadcast in a 342-node Dragonfly topology for the four broadcast 
implementations. 

Additionally, we have also explained these improvements with the dynamic network throughput 
(evolution along simulation time of the throughput) shown in Figure 50. 

 
Figure 50: Dynamic throughput for 100 1-M broadcast in a 342-node Dragonfly topology for the four 
broadcast implementations. 

 

12.3 Support for several VEF-traces in Sauron 

To undertake T3.4 several enhancements have been included in Sauron. UPV has upgraded the Sauron 
simulator to allow the execution of several VEF traces concurrently in Sauron with several mapping 
policies. The mapping policy defines the collocation of the tasks of the applications to computing nodes 
in the network. Three different policies of mapping application tasks to network processing nodes have 
been implemented in Sauron. These mapping policies, shown in Figure 51, have been used in T3.4 
when analyzing the inter-application interference. 
 
The first one consists of assigning successive compute nodes in the network to the application (Linear 
mapping) until the application tasks are completed. Switch mapping is the second policy where complete 
switches are alternated, so that all processing nodes of alternative switches are assigned. Finally, the 
last policy assigns alternate nodes (Node mapping). These policies are intended to evaluate disparate 
application mapping situations to analyze the interference produced in each of these situations. 
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a) Linear mapping 

 
b) Switch mapping 

 
c) Node mapping 

 Figure 51: Mapping policies. Application tasks allocation to computing nodes. 

 

Additionally, when two applications are running concurrently, the execution times are different, and 
statistic for them must stop being collected in different times. The simulator must stop collecting statistics 
for the first one when it finishes while for the other it must continue collecting statistics until its end. We 
have adapted the simulator for doing this.  This can be seen in Figure 52, where we present the Dynamic 
network throughput for the benchmark of 500 broadcasts and Gromacs in concurrent execution and in 
isolated execution for the three mappings considered. 
 

 
a) Linear mapping 

 

 
b) Node mapping 
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c) Switch mapping 

Figure 52: Dynamic network throughput for the benchmark of 500 broadcasts and Gromacs in 
concurrent execution and in isolated execution for the three mapping policies. 

 
In these figures we can see the dynamic network throughput for both applications running concurrently 
and also the dynamic network throughput when they are run in isolation. Additionally, the figures also 
give information about when each of the applications finishes its execution. 
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13 Conclusion 
The RED-SEA developed a plethora of technologies on interconnects. It also formed a great 
environment for the European BXI interconnect to evolve. Overall, our key objectives and targets on 
scalability, bandwidth, open standards, etc., have been met while the BXIv3 architecture and first 
hardware implementations have been produced and are tested in first hardware platforms. 
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14 Acronyms and Abbreviations 
 

Term Definition 

ACC Accurate Congestion Management 
ARM Advanced RISC Machine 
ASIC Application-Specific Integrated Circuit 
AXI Advanced eXtensible Interface 
BXI Bull eXascale Interconnect 
CCP Collective Communication Primitive 
CPU Central Processing Unit 
CRC Cyclic Redundancy Check 
FCS Frame Check Sequence 
FCT Flow Completion Time 
FEC Forward Error Correction 
FFT Fast Fourier Transform 
FIFO First-In-First-Out 
FPGA Field-Programmable Gate Array 
GLF Global Link First 
HAS High-level Architecture Specification 
HLA High Level Architecture 
HPC High Performance Computing 
IO Input/Output 
IP Intellectual Property / Internet Protocol (depending on the context) 
ISA Instruction Set Architecture 
LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator 
LLF Local Link First 
MAC Medium Access Control 
MPC Multi-Processor Computing 
MPI Message Passing Interface 
MSA Modular Supercomputing Architecture 
MTU Maximum Transmission Unit 
NIC Network Interface Controller 
OSI Open Systems Interconnection 
OSU Ohio State University 
QoS Quality of Service 
P2P Point to Point 
PCI Peripheral Component Interconnect 
PCS Physical Coding Sublayer 
PFC Priority Flow Control 
PGAS Partitioned Global Address Space 
PMA Physical Media Attachment 
PMD Physical Media Dependent 
QFDB Quad-FPGA DaughterBoard 
RDMA Remote Direct Memory Access 
RISC Reduced Instruction Set Computer 
RMA Remote Memory Access 
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Term Definition 

RRP Rate Re-evaluation Period 
RS Reconciliation Sublayer 
RTL Register Transfer Level 
SN Sequence Number 
TCP Transmission Control Protocol 
WRR Weighted Round Robin 

Table 2: Acronyms and Abbreviations 
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