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Executive Summary

This deliverable presents improvements of the support for the BullSequana eXascale
Interconnect (BXI) by the two Message-Passing Interface (MPI) implementations Para-
Station MPI and Multi-Processor Computing (MPC). The multi-rail support in MPC was
further improved especially with respect to its support for the rendezvous protocol. This
defers the transmission of MPI payload until the target application buffer is known to
the communication layer to avoid intermediate copies of large memory regions. The
pscom4portals plugin of the pscom library enabling BXI support in ParaStation MPI
has been adapted to the new Remote Memory Access (RMA) interface. This interface
has been developed within the DEEP-SEA project and provides upper software layers
with a more direct access to the hardware’s RMA capabilities. With these adaptations,
applications benefit from an improved performance of MPI one-sided communication
on top of BXI.

Finally, this deliverable presents streaming Processing in Network (sPIN), a micro-
architecture for network accelerators, as well as FPsPINi, constituting its first full-
system prototype implementation in hardware. These works demonstrate how package
processing tasks, that are commonly performed by the Central Processing Unit (CPU),
can be offloaded to a smart Network Interface Card (NIC) to enable a better overlap of
communication and computation in parallel applications.
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1 Introduction

The MPI standard is a central component of the software stack in High Performance
Computing (HPC) systems. It acts as the main interface towards the application layer
while providing efficient access to the resources of the HPC interconnect and still
abstracting from the low-level hardware details. This way, MPI applications can run on
any supercomputing system without the need for system-specific adaptations.

This deliverable builds upon the work presented in Deliverable D 4.3 of the RED-SEA
project [29]. This presented the software architecture of the two MPI implementations
MPC and ParaStation MPI while focusing on the support for the BXI network. In doing
so, the respective extensions developed in RED-SEA were introduced: Commissariat
à l’énergie atomique et aux énergies alternatives (CEA) developed multi-rail support
for MPC to make efficient use of multiple NICs per compute node and ParTec added
support for BXI to ParaStation MPI, enabling efficient communication in HPC system
using this high-speed interconnect. This way, also Modular Supercomputer Architecture
(MSA) systems exhibiting a heterogeneous network landscape can be supported, as
these developments enable the transparent MPI bridging to/from BXI.

This deliverable introduces further optimisations of these two MPI w.r.t. the support
for BXI. CEA could further improve the multi-rail support and its integration within the
MPC framework. Efforts were distributed into validating the prototype developed in
Deliverable D 4.3 in terms of functionalities and performances and introducing new key
software designs to strengthen the foundation of the communication module. ParTec
adapted the pscome4portals plugin enabling BXI support in ParaStation MPI to the
re-design of pscom’s RMA Application Programming Interface (API). This re-design
is part of the results of the DEEP-SEA project with the goal to enable more efficient
implementations of MPI one-sided communication on top of pscom by providing direct
access to the hardware’s RMA capabilities. Additionally, these developments enable
the efficient composability of MPI and Partitioned Global Address Space (PGAS)
workloads by relying on a common low-level communication stack. By adapting the
pscom4portals plugin to this redesign, all the aforementioned benefits are brought to
systems leveraging BXI. Additionally, a preliminary analysis of the network bridging
support in ParaStation MPI across BXI and InfiniBand (IB) was conducted on the DEEP
system at Jülich Supercomputing Centre (JSC).

Finally, this deliverable presents sPIN, which is a micro-architecture for network
accelerators developed at ETH Zurich. This micro-architecture is optimised for packet
processing, fine-grain memory hierarchies, and data movement acceleration. Smart-
NICs built upon this architecture can be used for offloading packet processing tasks to
the NIC to give the CPU more time for traditional computational tasks.

©RED-SEA Consortium Partners, All rights reserved. Page 7 of 73



D4.7 – Optimized MPI and compute in
network implementations

Release – Final

2 Multi-Processor Computing

2.1 Introduction

Nowadays, HPC applications scale to several hundred nodes, and MPI has become
the de facto standard for internode communication. It abstracts P2P communications
over many different high performance interconnect networks while taking advantage
of their specific capabilities. With ever increasing demand for bandwidth-oriented
communications, new architectures have arised featuring multiple NICs. In addition,
those NICs are capabable of handling tasks previously devoted to the CPU (DMA
communication, tag-matching offloading, triggered operations,...) thus decreasing the
communication overhead.

Sending messages over multiple NICs englobes two kind of use cases: first, data
striping that is to split one message and distribute fragments among the NICs, second,
multiplexing that is to dynamically schedule messages on the NICs. In this report,
we will expose the development that were made in the MPC framework 1, CEA’s MPI
implementation [30], to support both use cases while taking advantages of the offloading
capabilities of the BXI NIC. There are other use cases for multirail such as network
failover or redundancy [32, 7] but they are out of the scope of this study.

We decided to describe our solution through three parts. The first part discusses
the architectural design choices that were made to support the multirail. Secong, those
design constaints were then ported to support BXI networks. And finally, we give a
short overview of the support for the multi-thread version of MPC.

2.2 Point-to-point communications with multirail

Most MPI implementation rely on a two-layered architecture for the implementation
of P2P communications [16, 36]. To satisfy requirements for fast communication of
any kind (size) of data, P2P operations are orchestrated first through the selection of
a suitable protocol that is then operated thanks to the transport layer. We describe in
the following the different types of protocols, we explain how they were implemented in
MPC legacy and how this conflicted with the implementation of the multirail. We finally
discuss the new architectural designs chosen to overcome current limitations.

2.2.1 Generalities

Let’s first discuss some general notions commonly used in MPI communication libraries.

2.2.1.1 Two-sided and one-sided communications In the context of MPI, two-
sided and one-sided communication refer to different models for processes (typically
running on different nodes in a cluster) to exchange data and coordinate their work.
These models have distinct characteristics and are used in different scenarios.

Two-sided communication is the traditional form of message passing where com-
munication occurs through explicit send and receive operations. These operations

1For more information, visit https://mpc.hpcframework.com/
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are often blocking, meaning the sender waits until the receiver is ready to receive the
message, and the receiver waits until the message arrives. In two-sided communication,
processes explicitly synchronize their communication by invoking matching send and
receive operations. This synchronicity ensures that the sender and receiver coordinate
their actions effectively. MPI provides functions like MPI_Send and MPI_Recv for two-
sided communication. We mention that while we have an explicit synchronization, both
primitive have their non-blocking counter-part MPI_Isend and MPI_Irecv.

One-sided communication is a more relaxed model where one process can directly
access and modify the memory of another process without the need for explicit synchro-
nization. This allows for non-blocking communication, where processes can continue
their work without waiting for each other. In one-sided communication, processes use
PUT and GET operations to access remote memory. For example, a process can initiate
a PUT operation to write data directly into the memory of another process. These are
commonly called RMA operations.

We will see in the following that both models can be used to transfer data efficiently
depending on the transfer size and thus using different types of protocols.

2.2.1.2 Protocols As said earlier, nowdays applications require fast compute and
fast network to simulate more and more complex phenomenon and they do so by
distributing computation onto hundreds of nodes thanks to communication middlewares
implementing the MPI standard. One of the major bottleneck of such middlewares
are copies. We will focus here on two kind of copies that come from the fact that to
send user data from one process to the other, intermediary copies may be needed:
first, some are inherent from the underlying protocol (TCP/IP for example) and second,
others are due to the non-blocking behavior of MPI communications. The former can
be illustrated when an MPI_Send call is performed by the sender before and MPI_Recv
has been posted by the receiver. In order not to block the sender from doing actual
computation, the send data is buffered to a temporary buffer, and data will be received
and stored on the receiver to an other internal (or shadow) buffer until the user buffer is
available.

To avoid the first kind of copies, smart-NICs were devised that are capable of doing
zero-copy communications. In other words, they are able to read from the send buffer,
send it through the network and write it straight to the receive buffer as illutrated in
Figure 1b, the technology is also called Remote Direct Memory Access (RDMA) [27].
To avoid the second kind, and in the context of two-sided communications 2, actual data
transfert must be preceeded by a synchronization to prepare the memory that will be
targeted and exchange information mandatory for the transfert (such as local memory
addresses for example). Such synchronization is performed through a rendez-vous,
one example is given Figure 1b. While this would be suited for bandwidth-oriented
communication, message can also be sent eagerly to improve latency at the cost of
copies, see Figure 1a. It is then the role of the implementation to choose which protocol
is best, based on the underlying network and other metrics. [37] give an interesting
overview of the different protocols.

2We refer the reader to the MPI standard for more information on one-sided and two-sided communi-
cations, https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
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Copy App buf
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(a) Eager protocol.

MPI_Send MPI_Recv
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FIN
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App buf

(b) Rendez-vous protocol.

MPI_Send MPI_Recv
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GET

FIN
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App bufApp buf

(c) Data striping protocol.

Figure 1: Illustration of protocols for P2P communications. Eager : payload is sent on
the first message. Rendez-vous: Ready-To-Send (RTS) control message is sent along
with tag information for matching, upon successful match, receiver emits a RDMA GET
operation using protocol data exchanged with RTS message. Once RDMA operation is
completed, receiver sends a FIN control message to notify sender of completion. Data
striping: rendez-vous multiple RDMA operations.

P0

N0

N1

N0

N1

M0
P1

(a) Data striping

P0

N0

N1

N0

N1

M0

M1

P1

(b) Multiplexing

Figure 2: Use cases for multirail.
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Finally, we mention protocols related to the multirail feature, and first the data striping
protocol. Data striping protocol first perform a rendez-vous and then send the data in
fragments to the receiver using zero-copy communications with offset management,
see Figure 2a. This protocol may be forced whenever the message size exceeds
the network Maximum Transfer Unit (MTU). However, it can also be used to improve
bandwidth when multiple NICs are available when choosing an adequate fragment size.
Multiplexing is more a scheduling policy for P2P communication than a protocol and it
can also be used to schedule and parallelize communications when multiple NICs are
available, see Figure 2b.

2.2.2 Legacy architecture: limitations and drawbacks

As shown in Figure 3, MPC’s architecture can be represented by two-layers. The first
layer implements all MPI-related constraints specified by the standard such as tag-
matching, communicators, or message ordering. The second layer (Rail layer) exposes
an API that implements P2P communications over the different type of networks such
as TCP/IP (tcp), InfiniBand (ib) or BXI (ptl).

One major implementation design is that protocols described earlier are imple-
mented transparently by the Rail layer. As a consequence, using such API to implement
the data striping protocol could imply a synchronization for all fragments whenever their
size is larger than the rendez-vous threshold, thus inducing an important performance
penalty. Indeed, only one rendez-vous would be necessary to implement this protocol
and prepare the memories. The rendez-vous threshold is chosen based on performance
tradeoffs between the cost of copies with the eager protocol and the synchronization
with rendez-vous. Moreover, since protocols are common to almost all networks (ib, ptl,
ofi), it creates code redundancy and thus software maintainability issues.

Another limitation was the design of the Rail API. The API’s rigidity becomes a
limiting factor, as it enforces stringent rules on how a message is sent and offers little
room for customization or adaptability. This hinders the development of tailored protocol
management and thus leads to suboptimal performance. Indeed, all message metadata
needed for protocol management were included in a single data structure that was
then packed as is and sent on the network. While this centralizes informations, this is
not efficient, especially in such environments where latency is critical, as an excess
of metadata will be sent each time even though different control messages require
different metadata.

As a consequence, we decided to make structural changes to overcome this lim-
itation by introducing a dedicated protocol layer. In the following, we discuss the
developments in the MPC framework to improve code quality and efficiency to imple-
ment the multirail feature.

2.2.3 Recent developments and designs

We discuss here some of the implementation details of the developments realized for
the implementation of the multirail feature.

©RED-SEA Consortium Partners, All rights reserved. Page 11 of 73
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MPI API (MPI Send, MPI Recv)

tag-matching reordering communicator

Rail API

ofi ib tcp ptl

Figure 3: Overview of the previous MPC architecture. In the Rail layer, protocols and
data transfert are transparently implemented by the Rail API.

MPI API (MPI Send, MPI Recv)

communicator

LowComm Protocol API

tag-matching protocols multirail task offload

Rail API

ofi ib tcp ptl

Figure 4: Overview of the new MPC architecture. A dedicated protocol layer is now on
top of the Rail layer.

2.2.3.1 Active Message paradigm The Active Message paradigm for remote com-
munication is a programming model and communication approach that can be used in
HPC communication library such as MPI. In this model, communication is asynchronous,
decoupling it from computation. It relies on lightweight message passing, where mes-
sages contain both control information and data payloads. Each process has predefined
message handlers responsible for processing incoming messages. More specifically,
messages contain in their header the identifier of a user-level handler executed on
message arrival and with the message body as argument [13]. The handler must exe-
cute quickly and to completion. This approach optimizes protocol processing, making it
efficient for control messages and data packets. Customization and extensibility enable
developers to define their own message types and handlers for application-specific
communication patterns, making it a valuable tool for the development of custom
protocols.

For example, consider the development of the rendez-vous protocol such as de-
scribed in Figure 1b. A specific handler corresponding to the Ready To Send (RTS)
control message that will be then responsible for performing the RMA GET operations.
On its termination, another control message FIN will be sent which will activate the
corresponding handler on the sender so it can complete its request. All necessary
handlers are implemented in the protocol layer, see Figure 4. In addition, specific
care has been given to use the offloading capabilities of the NIC when available, this
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is discussed in more details in Section 2.3. Also, another datapath is reserved for
communication between tasks (or threads), see Section 2.4.

To satisfy such requirements and answer to the limitations discussed in Sect. 2.2.2,
the Rail API has been extented and new datastructures introduced.

2.2.3.2 Core datastructures and Rail APIs Our implementation relies on two main
datastructures: endpoints and interfaces.

Conceptually, endpoints refer to the communication channels or connection points
through which processes can exchange messages and data. They are virtual communi-
cation channels associated with each process in an MPI program. They serve as the
entry and exit points for communication between processes. Each process has a set of
endpoints, and each endpoint is uniquely identified by a specific endpoint number. They
are created dynamically which means processes can create and manage endpoints at
runtime as needed. This flexibility is useful when the number of processes or commu-
nication patterns is not known in advance. We distiguish two types of endpoints: the
protocol endpoints and the rail endpoints. The latter are defined in the Rail layer and
contains connection information for the specific network that it targets (for example, IP
address for TCP, Queue Pairs for InfiniBand or Process Identifiers in Portals4), plus an
interface object which are defined in the next paragraph. On the other hand, protocol
endpoints are used to englobe the potential multiple rail endpoints. As a consequence,
they are the datastructure used to implement the multirail feature. Indeed, internal
implementation can choose to iterate (round-robin for example) on the different rail
endpoints to send individual messages for multiplexing or fragments in the case of data
striping.

Interfaces are designed to abstract the differences between various network tech-
nologies, such as InfiniBand, Ethernet, or shared-memory communication. This abstrac-
tion allows MPI applications to remain network-agnostic, making it easier to develop
portable code that can run on different HPC systems. Interfaces provide a standardized
and uniform set of function pointers for key communication tasks. These tasks can
include sending data between processes, managing connections and endpoints, and
handling various communication-related operations adapted both for two-sided and
one-sided communication models. There is basically one interface object per physical
NICs.

We will now elaborate on the API comprising the set of operations linked to the Rail.
A subset is given in Listing 1. As mentioned in Section 2.2.3.1, two-sided operations
provides an argument id to specify the identifier of the handler that will be called on
the distant process. All API calls provide a sufficiently flexible interface to send custom
data making the implementation of any protocol easier and more efficient. Finally, for
two-sided operations, we distinguish two types of operations: bcopy for Buffered Copy
and zcopy for Zero Copy. For bcopy sends, prior to being sent, user data is copied and
packed to a shadow buffer. This allows the user buffer to be reused directly and thus
the MPI_Send to return immediately and correpond to the eager protocol. For zcopy on
the other hand, a completion callback is called by the Rail layer whenever the user data
has been sent and can thus be reused.

©RED-SEA Consortium Partners, All rights reserved. Page 13 of 73
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//Two -sided operations
ssize_t lcr_send_am_bcopy_func_t(_mpc_lowcomm_endpoint_t *ep ,

uint8_t id, lcr_pack_callback_t pack ,
void *arg , unsigned flags);

int lcr_send_am_zcopy_func_t(_mpc_lowcomm_endpoint_t *ep,
uint8_t id, void *header ,
unsigned header_length ,
const struct iovec *iov ,
size_t iovcnt ,
unsigned flags ,
lcr_completion_t *comp);

//One -sided operations
int lcr_put_zcopy_func_t(_mpc_lowcomm_endpoint_t *ep,

uint64_t local_addr ,
uint64_t remote_addr ,
lcr_memp_t *remote_key ,
size_t size ,
lcr_completion_t *ctx);

int lcr_get_zcopy_func_t(_mpc_lowcomm_endpoint_t *ep,
uint64_t local_addr ,
uint64_t remote_addr ,
lcr_memp_t *remote_key ,
size_t size ,
lcr_completion_t *ctx);

Listing 1: Two-sided and one-sided operations of the Rail interface

However, this API and especially the Active Message (AM) API falls short when
targetting the offloading capabilities of NICs of BXI networks due to the nature of the
tag-matching offloading mechanism.

2.3 Application to BXI networks

In this section, we give an overview of the Portals4 standard that is the interface
implemented by the BXI to expose the NIC to the application. We then discuss some
of the offloading capabilities of BXI NICs, especially the tag-matching offloading, and
how we exploited them to support the multirail feature. We then expose some of its
limitations and explain why we decided to support the AM API in our Portals4 driver.

2.3.1 Portals4 standard

Portals4 is a communication interface and protocol that focuses on optimizing commu-
nication in high-performance and parallel computing environments [4]. It is network-
agnostic and it emphasises on low-latency, high-bandwidth communications. It includes
support for DMA operations, which enable efficient data transfers without involving
the CPU. It also provides messaging capabilities for reliable communication between
processes.
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Most importantly, it is the standard chosen by BXI to interface with the NIC. Support
for BXI network within MPC has been implemented through the Portals4 interface.

2.3.2 Offloaded multirail communications

One of the primary purposes of offloading operations onto the NIC is to improve the
global computation to communication overlap by relieving the CPU from some of the
communication overhead, such as tag-matching.

2.3.2.1 Tag-matching offloading Tag-matching offloading is a hardware-based
feature that allows a NIC to offload certain packet filtering and matching operations from
the host CPU to the NIC itself. Instead of handling these operations in software, which
can be resource-intensive and introduce latency, the NIC uses dedicated hardware
components and algorithms to filter, classify, and process network packets based on
specific tags or metadata associated with each packet. The NIC examines the tags in
incoming packets and compares them to pre-configured rules or policies.

In the context of an MPI two-sided communication, the primary benefit of tag-
matching offloading typically lies in optimizing receive operations. Receive-side of-
floading reduces the CPU overhead associated with message processing, leading
to lower latency, improved scalability, and better performance. In the case where a
MPI_Recv has been previously posted (before remote data is received) with the specific
tag information, the NIC compares the tag and metadata in the message header and
if a match is found, it may directly deliver the message to the appropriate memory
location. As a consequence, this avoids interruption of the host CPU to handle the
incoming message and participate to a better computation/communication overlap. This
mechanism is complementary with zero-copies where the tag acts as memory key
to access the registered memory created by the MPI_Recv. Once the data transfer is
complete, the NIC can notify the application that the data has been received and is
available for processing. This mechanism may avoid temporary copies during the eager
protocol whenever memory registration done during the MPI_Recv is performed before
the send operation.

However, such communication model based on tag-matching is not suitable with the
AM model exposed in Section 2.2.3.1. For other transports such as TCP or InfiniBand
implemented in MPC, tag-matching is performed by the software with the classical
implementation that uses the combination of the Posted Receive Queue (PRQ) and
Unexpected Message Queue (UMQ), see [35] for more information. But this becomes
unnecessary when using a tag-matching interface since it is done by the hardware. As
a consequence, we developed a new data path in the protocol layer adapted to offload
the matching and we extended the Rail API to expose specifically tag-matching, see
Listing 2 and the so-called TAG API. The new datapath has been developed in the
protocol layer and realizes all protocols (eager, rendez-vous, data striping). We mention
that prior to this work, MPC already supported a version of the Portals4 driver.

©RED-SEA Consortium Partners, All rights reserved. Page 15 of 73



D4.7 – Optimized MPI and compute in
network implementations

Release – Final

//Tag send operation
int lcr_send_tag_zcopy_func_t(_mpc_lowcomm_endpoint_t *ep,

lcr_tag_t tag ,
uint64_t imm ,
const struct iovec *iov ,
size_t iovcnt ,
unsigned flags ,
lcr_completion_t *ctx);

//Tag recv operation , or memory registration based on tag
int lcr_recv_tag_zcopy_func_t(sctk_rail_info_t *rail ,

lcr_tag_t tag ,
lcr_tag_t ign_tag ,
const struct iovec *iov ,
size_t iovcnt ,
unsigned flags ,
lcr_tag_context_t *ctx);

Listing 2: Tag-matching operations of the Rail interface

MPI_Send

MPI_Recv

GET

GET

RTS

App buf

App buf

N1 N1N2 N2
Reg 
mem

notifs

notifs

complete

Figure 5: Overview of the datastriping protocol for multirail.

2.3.2.2 Offloaded data-striping One of the main differences compared to classic
data striping protocol is the notification mechanism on registered memory proposed by
the Portals4 specification.

Whenever an operation is performed on a registered memory that has been correctly
configured, the NIC generates a notification to the application. These are called "notified
RMA" operations and they can be used to suppress the need for the FIN control
message. The algorithm resulting from this functionality is depicted in Figure 5. In the
context of communication on multiple rails, the sender buffer is registered on all available
NICs so that the succession of GET operations can be performed by the receiver on
each of the fragments through offset management. Each notification produced on the
sender are then used to progress and complete the request. Some technical details
such as tag management have voluntarily been omitted here.

There are however inherent limitations of the tag-matching offloading mechanism,
especially in the context of MPC. We discuss some of them in the next section.
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2.3.2.3 Limitations and Active Message support There are three main limitations
encountered with tag-matching offloading that justified the support for AM model by the
Portals4 driver in MPC.

First, there is no easy way to implement multiplexing. Indeed, for a message to be
received, memory needs to be registered to a specific NIC, however the receiver has
no trivial way of knowing on which NIC the next message will be received. And the
problem is clear especially for wildcard messages (MPI_ANY_SOURCE). As a consequence,
multiplexing is still not supported within MPC whenever the tag-matching offloading
capabilities is turned on by the driver implementation.

Second, the metadata that can be piggy-backed while sending user data is limited.
The Portals4 specification only allows the matching bits and 8 bytes header to be sent
as metadata which may hinder the development of more advanced protocols.

Finally, using the thread-based feature of the MPC framework is not possible. Indeed,
suppose two MPI threads P0 and P1 post a wildcard (MPI_ANY_SOURCE) to one NIC, and
a distant MPI P3 sends to P0. Since the tag list of P0 and P1 are shared through the
NIC, there are no way to discriminate both receives and thus the message from P3 can
not be unambigously delivered to P0.

For all these reasons, it was decided to support the AM model on our Portals4 driver.
The support for AM API consisted in implementing the respective calls as presented in
Listing 1 while preserving the possibility the use the TAG API at runtime. Overall, our
main contributions was the implementation of the offloaded data striping protocol and
the support for the AM API. In addition, we improved the performances of the driver,
see Section 2.5, through multiple optimizations that we felt were out of the scope of this
report.

2.4 Multithreaded communications

The remaining part of the work in the project was dedicated to inter-thread communica-
tions within the MPC framework. We thus backported the previous implementation to
the new architecture described in Figure 4 and next we give it a short description.

The communication scheme in MPC involves utilizing shared memory for com-
munication between tasks within a node, while inter-node communication relies on
sockets. This model enables an optimized implementation of communications between
MPI-tasks, leveraging user-level zero-copy techniques made possible by the shared
address space among tasks [30]. As mentioned in Figure 4, another datapath has been
dedicated to thread communication.

2.5 Evaluation

Validation benchmarks have been run on machines provided by the CEA Inti super-
computer, some of them featuring multi-NIC nodes on BXI network. In this section, we
aim at validating our implementation and compare it with other MPI implementations
(OpenMPI and older version of MPC).

We validate on differents testbeds:

©RED-SEA Consortium Partners, All rights reserved. Page 17 of 73



D4.7 – Optimized MPI and compute in
network implementations

Release – Final

100 101 102 103 104 105 106

Length

101

102

103

104

105

Ba
nd

wi
dt

h 
[M

B/
se

c]

Exchange, 2 MPI proc on AMD Rome
ompi
lcp
devel

100 101 102 103 104 105 106

Length

100

101

102

103

104

Ba
nd

wi
dt

h 
[M

B/
se

c]

Exchange, 64 MPI proc on AMD Rome
ompi
lcp
devel

(a) IMB Exchange bandwidth 2 (left) and 64 (right) MPI ranks on AMD Rome.
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(b) IMB Exchange latency 2 (left) and 64 (right) MPI ranks on AMD Rome.

Figure 6: IMB Exchange on a single node: ompi is the reference OpenMPI 4.1.5-Bull
version, lcp is the new implementation and devel is the reference old version of MPC.

1. AMD Rome: AMD EPYC 7H12 bi-socket (2×64cores) with 256GB of RAM on
InfiniBand network.

2. AMD BXI: AMD EPYC 8H12 bi-socket (2×64cores) with 256GB of RAM and
4×100Gb/s BXI network cards.

The first testbed is used to validate only the thread-based version while the second
one is used to validate the multirail feature. As a consequence, runs on the first
two testbeds will be done on a single node, thus all communications will use shared
memory mechanism (either inter-process shared-memory for OpenMPI or inter-thread
shared-memory for MPC).

Moreover, results are validated using mini-benchmarks: OSU bandwidth and latency
and a subset of MPI1 IMB benchmarks3. These benchmarks are performance-oriented
and typically measure raw bandwidth and latency.

Figure 6 shows latency and bandwidth results on the IMB Exchange benchmark in its
default configuration (number of iterations, message sizes,...). Firstly, our developments

3https://www.intel.com/content/dam/develop/external/us/en/documents/
imb-users-guide-607091.pdf
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(a) OSU bandwidth with one BXI NIC.
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(d) OSU latency with four BXI NICs.

Figure 7: OSU with one BXI NICs (a, c) and 4 (b, d) on AMD BXI. ompi is the ref-
erence OpenMPI 4.1.5-Bull version, lcp am is our version using the AM API (see
Section 2.3.2.3), lcp offload is the version using tag-matching offloading (see Sec-
tion 2.3.2.1). Messages of size > 1MB are split in fragments of 512kB and sent using
data striping protocol to take advantage of the multirail feature when possible.

show consistent results compared to the previous version of MPC: for 2 MPI ranks,
performance are similar while our implementation scales better on 64 MPI ranks.
Moreover, bandwidth and latency still suffers for small messages (< 8kB) compared to
OpenMPI. Part of the explanation lies in the large overhead introduced by the upper
layer of the MPC implementation with duplication of request initialization. Performance
could also be improved by implementing "immediate" sends to avoid request initialization
for very small messages (< 256B). On the other hand, results for large messages are
encouraging but a more in-depth study is needed to understand such results. As a
consequence, this demonstrates that developments described in Sections 2.2.3, 2.3.2
and 2.4 at least do not create overhead compared to previous reference implementation.

Figure 7 shows results on the OSU bandwidth benchmark for which we used the
default configuration. This benchmark is relevant to demonstrate the multirail feature
since messages are sent in batches of 64. As a consequence, with multiplexing enabled,
they are scheduled successively onto the multiple NICs in a round-robin fashion. For
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the OpenMPI 4.5.1-Bull version, MCA parameters OMPI_MCA_btl_bxi_max_btls and
OMPI_MCA_btl_bxi_max_cards have been set appropriately to use multiple NICs.

Figure 7a shows first that both AM and TAG API from the new driver implementation
now outperform our reference implementation of MPC (devel), especially for small mes-
sages. Moreover, it shows competitive bandwidth results compared to state-of-the-art
MPI implementation. The peak bandwidth is around 10GB/s and the offloaded version
has comparable performance compared to the AM version in terms of bandwidth.

On the other hand, Figure 7b demonstrates the efficiency of the multirail both
for multiplexing and data striping. lcp am shows unexpected behavior for messages
ranging from 512B to 2kB and this should be further investigated. However, our
multiplexing algorithm matches performances of ompi for large messages (>4kB) which
is promising. The data striping protocol for the offloaded version can be seen for
message size > 1MB.

As a final comment, Figure 7c shows that the offloaded version provids better
latency compared to the AM version of the BXI driver. This is due to the zero-copy
mechanism provided by tag-matching offloading which thus avoid intermediary copies
in the eager protocol. Moreover, other tests has been performed on other testbeds and
show consistent results.

2.6 Conclusion

In the report, we provided a high level view of all the developments that have been
made within the MPC framework to support the multirail feature. There are three main
contributions: first, we improved MPC’s software architecture of the communication
layer, second we supported data striping on multiple BXI NICs using their tag-matching
offloading capabilities, and third we adapted our previous development to support
thread-based communications.

In the future, we plan to consolidate the performance results observed in Section 2.5.
Also, we would like to take advantage of other offloading capabilities offered by the
BXI NIC such as Triggered Operations to design fully-offloaded collective algorithms or
using the iovec send operations for complex MPI Datatypes. We could further support
BXI extending the current API of the communication module with Atomics.

3 ParaStation MPI

ParaStation Modulo is a comprehensive software suite especially designed for MSA
systems. It is the selected middleware powering the DEEP projects but is also exten-
sively used in production environments, e. g., on the JUWELS Cluster/Booster system
at JSC [1] and the modular MeluXina system in Luxembourg.

The ParaStation MPI communication stack is a central pillar of ParaStation Modulo
and enables efficient communication for MPI applications. Its general software architec-
ture has been presented in Deliverable D4.3 [29]. The following sections focus on the
re-design of the RMA interface of the low-level pscom library, especially with respect to
its pscom4portals plugin.
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3.1 Optimised Low-level RMA

This section presents the work of adding the support for one-sided communication via
native RMA operations to ParaStation MPI on top of BXI. To benefit from the RMA
capabilities provided by BXI, the pscom4portals plugin has been extended to leverage
the native RMA support provided by the Portals 4 API for one-sided communication
operations (e. g., RMA put and get).

The presented work builds upon the re-design of pscom’s RMA interface in the
context of the DEEP-SEA project. It enables the efficient execution of both MPI one-
sided communication operations and PGAS workloads on top of a single low-level
communication layer, thereby improving the composability of different programming
models within MSA systems. The internal plugin interface has also been changed/ex-
tended in the context of this re-design. Therefore, the pscom4portals plugin had to
be adapted accordingly. This new RMA implementation is also aimed at improving
the interoperability and composability of MPI and PGAS environments. This allows
efficient use of RMA operations and one-sided communications offered by MPI and
PGAS programming models.

3.1.1 Architecture

The RMA support provided by pscom is implemented in a layered architecture (cf.
Fig. 8). The upper layer offers interfaces such as for memory region registration, RMA
communication, and RMA synchronisation, which can be directly used by higher-level
communication semantics such as MPI one-sided communication or PGAS concepts.
Another purpose of the upper layer is to provide software layers running on top with effi-
cient access to the RMA capabilities of the different hardware interconnects supported
by pscom. This is achieved by the lowest layer, i. e., the plugin layer. This interfaces via
the internal plugin interface with the upper, hardware-independent pscom layer and im-
plements the RMA support including memory region registration, RMA communication,
and synchronisation within the plugins for the different interconnects. In the case of
pscom4portals, this is realised by leveraging the one-sided communication operations
offered by the Portals 4 API, e. g., PtlMEAppend to create memory region, PtlPut for RMA
put communication, and event the waiting function PtlCTWait for synchronisation. The
implementation details of native RMA support are described in the following sections.

To utilise such native RMA capabilities, the exposed memory commonly has to be
registered with the Host Channel Adapter (HCA). The pscom library offers the function
pscom_mem_register for memory region registration in the hardware-oriented plugin layer.
To register its memory region, the initiator process can execute the following two steps:

1. Call this function pscom_mem_register and obtains a memory region handle pscom_mem_t
and a buffer containing information regarding the memory region.

2. Send this obtained buffer to the remote process to which the memory region is to
be exposed.

To have an access to the exposed memory region at initiator, the remote process can
perform the following steps:
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Figure 8: The layered architecture of the RMA support in pscom.

1. Receive the buffer containing the information of memory region from the initiator
process

2. Generate a connection-bound remote key object (i. .e, pscom_rkey_t) corresponding
to the exposed memory via the pscom API pscom_rkey_generate using the received
buffer.

The generated remote key object can be then utilised for native RMA communication
to the exposed memory region at the initiator. The new pscom RMA API also pro-
vides means for de-registering memory regions (pscom_mem_deregister), for freeing the
resources associated with the remote key object (pscom_rkey_destroy), and for releasing
the buffer containing the remote key once it has been sent to the remote process
(pscom_rkey_buffer_release).

The communication-related part of the new pscom RMA API contains six elementary
functions (cf. Lst. 3). These serve as the basis to implement higher-level APIs, e. g., as
defined by the MPI standard.
pscom_post_rma_put(pscom_request_t *request , pscom_rkey_t *rkey ,

int flag);
pscom_post_rma_get(pscom_request_t *request , pscom_rkey_t *rkey ,

int flag);
pscom_post_rma_accumulate(pscom_request_t *request ,

pscom_rkey_t *rkey , int flag);
pscom_post_rma_get_accumulate(pscom_request_t *request ,

pscom_rkey_t *rkey , int flag);
pscom_post_rma_fetch_and_op(pscom_request_t *request ,

pscom_rkey_t *rkey , int flag);
pscom_post_rma_compare_and_swap(pscom_request_t *request ,

void *origin_addr ,
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void *compare_addr ,
void *result_addr ,
pscom_rkey_t *rkey , int flag);

Listing 3: RMA communication APIs offered by the pscom library.

These functions support both native RMA and RMA based on two-sided communication
semantics. Native RMA not only requires memory region registration and remote key
generation, but also has to fulfil certain limitations of the network hardware (e.g., data
type, data length, and accumulate operation types). If native RMA is not supported
by the hardware, pscom will automatically fall back to the RMA based on two-sided
communication semantics. The use of the pscom’s two-sided communication functions
for realising the RMA functionalities requires additional information packed into the
extended header of pscom messages and shifts certain processing steps to the target
sides, e. g., the unpacking of complex data types, and the execution of accumulate
operations. The implementation and usage details of RMA based on two-sided commu-
nication semantics can be found in Deliverable D3.2 of the DEEP-SEA project [31].

The pscom library offers interfaces to perform native RMA synchronisation by flush-
ing individual connections (pscom_connection_flush) or entire sockets (pscom_socket_flush)
comprising multiple connections. These functions guarantee that the native RMA oper-
ations, which are issued on a socket or connection before this synchronisation call, are
completed at both the origin and target side. The origin side denotes the process that
performs the RMA call, and the target is the process in which the memory is accessed.

Note that the current design status of the interfaces mentioned above is still in an
early stage and the interfaces might be changed to match the needs of the intended
users in the future.

3.1.2 Memory Registration and Remote Key Generation

Figure 9 visualises the procedure of memory region registration and remote key gen-
eration in the pscom4portals plugin layer. At the target process which exposes a
memory region, a Matching List Entry (ME) with specific match_bits is created by calling
PtlMEAppend during registration (i. e., the invocation of pscom_mem_register). The progress
engine in the pscom4portals plugin is triggered to guarantee that the PTL_EVENT_LINK
event is logged, which indicates that the ME has been appended to the Portals Table
Entry (PTE). Then the specified match_bits, Process Identifier (PID), and Portal Table
Index (PTI) are packed into the remote key buffer and returned to the user. Afterwards,
this remote key buffer is sent to the remote process. The remote process can locally
generate a remote key via pscom_rkey_generate with the remote key buffer. For this, the
received data is unpacked into a remote key data structure in the pscom4portals plugin
layer.

3.1.3 RMA Communication

RMA communication operations (i. e., put, get, and atomic operations) have been
implemented in the pscom4portals plugin leveraging native hardware support provided
by the underlying BXI hardware. Therefore, these functions map onto their Portals 4
counterparts PtlPut, PtlGet, PtlAtomic, PtlFetchAtomic, and PtlSwap. The PID and PTI in

©RED-SEA Consortium Partners, All rights reserved. Page 23 of 73



D4.7 – Optimized MPI and compute in
network implementations

Release – Final

Figure 9: Procedure of memory region registration at the target and remote key genera-
tion at the remote process based on pscom4portals plugin.

the remote key object are used to specify the correct destination and match_bits grants
the access right to the exposed memory region.

Currently, the pscom library offers new interface for checking whether native RMA is
possible for a given connection. This allows software layers on top to determine whether
further means for synchronisation are required. Various parameters, e. g., data type and
atomic operation type, have to be passed to this function. In the pscom4portals plugin,
there exist certain limitations of data type, data length, and atomic operation types
due to Portals 4 API. For example, non-contiguous data types are not supported by
Portals 4. These limitations are determined during the initialisation of the pscom4portals
plugin, e. g., in the case of pscom4portals PtlNIInit will return the relevant parameters
supported by the underlying hardware.

3.1.4 Synchronization

The support for socket flush and connection flush within pscom4portals is realised by
using light-weight Counting Events (CEs) of Portals 4. Figure 10 shows how the RMA
synchronisation is achieved in the pscom4portals plugin by using example of an RMA
put request. A memory descriptor is created and bound to the whole virtual address
during the initialisation of pscom4portals plugin at the origin side. An Event Queue (EQ)
and a CE, where information about the operations performed on the memory descriptor
are recorded, are also attached to this memory descriptor. The EQ only logs the failed
events and the link events PTL_EVENT_LINK. When a put request PtlPut is initiated, an
acknowledgment event is requested and the counter Counter1 is incremented at the
origin side. The CE attached to the memory descriptor will log this acknowledgment
event at the origin side. The PtlCTWait function will block and wait for the CE (Counter2)
to reach a given value set by Counter1. This guarantees that the number of complete
RMA communication matches that of issued RMA communication on this socket or
connection.
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Figure 10: Mechanism of RMA synchronization based on a counting event in
pscom4portals plugin using Portal 4 API.

Here are some implementation examples of RMA synchronization in ParaStation
MPI. In MPI_Win_fence, this can be implemented by flushing sockets or connections,
followed by a barrier call. General active target synchronization is implemented with an
acknowledgement to the target after flushing the connection at the origin side. Passive
target lock and flush can be also implemented with an acknowledgement in a similar
manner as active target synchronization. The implementation of post-start-complete-
wait and lock-unlock synchronization of hardware-enabled RMA on top of BXI is shown
in Figure 11.������ ������	
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Figure 11: Implementation examples of active target synchronisation of post-start-
complete-wait (left) and passive synchronization of lock-unlock (right) of hardware-
accelerated RMA supported by Portals 4 API.
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3.2 Evaluation

The DEEP system served as platform for conducting a preliminary evaluation of the
native RMA support provided by the pscom4portals plugin. Therefore, both functionality
and performance have been analysed on the MPI level. This analysis compares
a new implementation of MPI one-sided communication leveraging the new RMA
interface of pscom with an old implementation based on two-sided communication
semantics in ParaStation MPI. Figure 12 presents the throughput and the latency of
MPI_Put obtained by running the osu_put_bw and osu_put_latency benchmarks of the OSU
benchmark suite on the DEEP system. We use their default RMA configuration, i. e.,
the window creation is done by calling MPI_Win_allocate and synchronisation is ensured
by using MPI_Win_flush. The implementation based on the new pscom RMA API shows
a higher throughput and lower latency than the old implementation based on two-sided
communication semantics in ParaStation MPI. Especially for small messages (<=
1024 B), the latency of the implementation based on the new pscom RMA API is around
30 % lower than that of the old implementation based on two-sided communication
semantics.
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Figure 12: Bandwidth (a) and latency (b) comparison of MPI_Put communication based
on hardware acceleration and two-sided communication semantics for OSU one-sided
micro benchmarks.

Figure 13 presents a similar comparison for MPI_Get for both the throughput and the
latency. Again, the implementation base on the new pscom RMA API shows a much
better performance compared with the two-sided RMA communication semantics in
ParaStation MPI. The latency with the new RMA implementation is significantly reduced
by approx. 60 % compared with the old implementation.

Figure 14 shows the latency evaluation of MPI_Accumulate. The BXI hardware sup-
ports a maximum data length for atomic operations (i. e., PtlAtomic) of 1024 B. There-
fore, small messages (<= 1024 B) experience an important performance benefit of
around 30 % latency reduction when using the new implementation of MPI one-sided
as compared with the two-sided-based implementation. However, once this threshold
is exceeded, pscom automatically falls back to a two-sided-based implementation of
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Figure 13: Bandwidth (a) and latency (b) comparison of MPI_Get communication based
on hardware acceleration and two-sided communication semantics for OSU one-sided
micro benchmarks.

atomics. Therefore, the latencies for larger messages are on par with the old imple-
mentation of MPI one-sided within ParaStation MPI. In case of MPI_Get_accumulate, the
data length limit of PtlFetchAtomic is 64 B. For small messages (<= 64 B) we observe a
latency reduction of approx. 80 % with the new implementation. We also see a similar
increase of the MPI_Get_accumulate latency at this threshold (64 B), where the RMA mode
is switched from hardware-accelerated RMA to RMA via two-sided semantics in pscom,
such that an increase of latency is observed for the case of pscom RMA API. Figure 15
shows the latency of MPI_Compare_and_swap and MPI_Fetch_and_op respectively. The default
data size of atomic operations in OSU benchmarks is set to 8 B. The window is created
with MPI_Win_allocate and the synchronization function is MPI_Win_flush. The latency
obtained from the new pscom RMA API is about 80 % lower than the two-sided-based
implementation. This is due to an internal lock within ParaStation MPI that is required
to guarantee the atomicity of the two-sided-based approach.

3.3 Transparent Network Bridging

The pscom4portals plugin in conjunction with pscom’s gateway capabilities enables the
transparent bridging to and from the BXI network. This way, MSA systems exhibiting
a heterogeneous network landscape can run MPI workloads across multiple modules
even if they use different underlying interconnection technologies including BXI.

The DEEP system (cf. Tab. 1) is an example for such a setup: besides the cluster
nodes and the Extreme Scale Booster (ESB) nodes which are connected via IB, it
contains a few nodes using BXI as the high-speed interconnect. This testbed therefore
served a preliminary study to assess the network bridging between IB and BXI. The
results of this preliminary analysis are shown in Figure 16. Therefore, one of the four
BXI nodes has been equipped with an IB HCA. This node is therefore able to serve as
a gateway node, federating the IB and the BXI fabric.
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Figure 14: Comparison of Latency of MPI_Accumulate (a) and MPI_Get_accumulate (b) via
pscom RMA API and the two-sided RMA communication in ParaStation MPI for OSU
one-sided micro benchmarks.
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Figure 15: Latency comparison of MPI_Fetch_and_op and MPI_Compare_and_swap communi-
cation based on hardware acceleration and two-sided communication semantics for
OSU one-sided micro benchmarks.
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Cluster Nodes BXI Nodes

Architecture Intel(R) Xeon(R) Gold 6146 Intel(R) Xeon(R) Gold 5122
Node Count 12 4
Socket Count 2 1
Memory per Node 192 GiB 48 GiB
Interconnect ConnectX-5 BXI 1.3

Table 1: The DEEP system serving as testbed for the evaluation of ParaStation MPI’s
support for network bridging across IB and BXI.

The main goal of this test was to demonstrate the ability of ParaStation MPI to
transparently bridge MPI traffic to/from the BXI network. Therefore, the performance
figures should be considered preliminary. Further optimisations would be required to
improve the network throughput via the gateway node. Especially, the plugin-specific
parameters (e. g., the number and size of pre-allocated send and receive buffers) have
a strong impact on the resulting performance.
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Figure 16: A throughput analysis of the network bridging between InfiniBand and BXI
on the DEEP system. The preliminary results were obtained by running the osu_bw
benchmark between a cluster node and a BXI node on the DEEP system. Performance
improvements can be expected by implementing further optimisations especially w.r.t.
to the tuning of plugin-specific parameters.

3.4 Conclusion

In conclusion, the newly implemented pscom RMA API using Portals 4 on top of BXI
shows important performance improvements compared with the former two-sided-
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based implementation in ParaStation MPI. A latency reduction of approx. 30 % for
MPI_Put and MPI_Accumulate and 60 % for MPI_Get for small messages (≤ 1024 B) with
the new implementation is obtained. We also observe a significant latency reduction
up to 80 % for MPI atomic operations, such as MPI_Accumulate, MPI_Compare_and_swap
and MPI_Fetch_and_op. These developments allow for efficient implementations of MPI
one-sided communication as well as PGAS programming models (e. g., the GPI-2
implementation of the Global Address Space Programming Interface (GASPI) standard)
on top of pscom.

Furthermore, the preliminary evaluation of pscom’s network bridging capabilities
demonstrates its viability also for MSA systems using BXI among other high-speed
interconnects.

4 sPIN: High-performance streaming Processing in the
Network

4.1 Introduction

SmartNICs are a recent movement towards offloaded packet processing to free the
CPU from packet processing and thus spend more time handling the typical computa-
tion tasks. They come in different programming models and dataflow models. Among
different paradigms, sPIN [18] developed at ETH Zurich proposes network accelerators
with a micro-architecture optimised for packet processing and fine-grain memory hierar-
chies and data movement acceleration. It offers precise control to the programmers
to build high-performance networked applications that are offloaded completely to the
SmartNIC.

The sPIN paradigm has been evaluated extensively with diverse networked appli-
cations [10, 5, 9], showcasing its capability of offloading complicated applications to
a sPIN-based network accelerator. Up to now, however, all evaluations of sPIN took
place in simulation and there lacked a real-world end-to-end demo on hardware. While
simulation works well to demonstrate capabilities of the paradigm in a synthetic envi-
ronment, an end-to-end evaluation involving all parts of the final system would uncover
unforeseen design and implementation shortcomings and offer valuable insights to
further improve the paradigm.

In this section of the introduction, we give a brief summary of the contributions of
the work described in this deliverable. For more technical details we refer the reader to
the MSc thesis of Pengcheng Xu [40], supervised by the SPCL group at ETH Zurich.
An overview functional diagram of the system is shown in Figure 17.

First of all, we built FPsPIN, the first full-system demo of sPIN in hardware based on
the PsPIN [11] implementation of sPIN and the Corundum [15] open-source Ethernet
Network Interface Card (NIC). This allows fast testing of packet handlers (code that
runs on the sPIN cluster) in comparison to the slow cycle-accurate simulator. The
hardware (Section 4.2) and software (Section 4.3) components bridge the missing
parts in the PsPIN prototype to allow sending and receiving of packet data from real
NICs and, most importantly, completes the host-side programming model of sPIN. This
allows development of complete sPIN applications with both the NIC-side handlers and
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Figure 17: Overview of the complete server system, showing the software stack on the
CPU and hardware components on the SmartNIC. The green box marks the existing
PsPIN processing cluster available from previous work. Everything else needs to be
developed, integrated and tested.

host-side application. In all, the demo system greatly facilitates development both of
the sPIN platform as well as applications designed for it.

An important yet largely unexplored benefit of sPIN is the possibility of computa-
tion/communication overlap by offloading packet processing tasks to the SmartNIC. We
implement synthetic ping-pong and file transfer benchmarks to demonstrate the e2e
latency and throughput of the system in ideal situations. We port the MPI Datatypes [33]
sPIN handlers [10] to the FPsPIN platform (Section 4.5.4) to demonstrate the ratio of
overlapping between the computation and communication tasks, as well as interference
from each other. These demonstrations show sPIN’s potential of accelerating networked
applications and improving efficiency, but also open up interesting research questions
about the architectural design of packet processing units in SmartNICs. These demon-
strations also show that the RED-SEA KPI of developing a network offload soultion
that achieves 90% communication-computation overlap on sufficiently large message
packing/unpacking has been fully achieved.

Last but not least, we discovered numerous shortcomings and points of improvement
in the sPIN specification [18] (Section 4.4) during the development of the FPsPIN
prototype system. We discuss about the issues closely with the sPIN team and work
together towards a more complete and sensible specification for other implementations
of the paradigm. Several of the proposed changes have already been incorporated
back into the specification.

©RED-SEA Consortium Partners, All rights reserved. Page 31 of 73



D4.7 – Optimized MPI and compute in
network implementations

Release – Final

4.2 FPsPIN Hardware Implementation

PsPIN is a RISC-V-based packet processing cluster implementing the sPIN in-network-
computing paradigm. However, PsPIN itself does not consist of a fully functional
SmartNIC due to the lack of capability to receive and send packets; it also lacks an
interface to read from and write to the system memory. The following three classes of
hardware components need to be implemented to achieve full functionality of a sPIN
NIC:

∙ the data path: the PsPIN cluster should be able to receive packet data from the
network and send a reply back into it;

∙ the control path: the PsPIN cluster and other components should be configured
from the host over various control registers and program memory (code and data);
and finally,

∙ the host-side DMA: the PsPIN cluster should be able to read from and write to the
main memory on the host system to establish the full sPIN programming model.

An overview of all the hardware components is shown in Figure 18. We now walk
through the design and implementation of these modules in more detail.

Module Name Description

pspin_host_dma Host acdma adapter
pspin_ingress_datapath Collective ingress data path wrapper
pspin_her_gen Handler Execution Request (HER) generator
pspin_ingress_dma Ingress DMA engine
pspin_pkt_alloc Packet buffer allocator
pspin_pkt_match Packet matching engine
pspin_ctrl_regs Control registers adapter
pspin_egress_dma Egress DMA engine

Table 2: Description of the modules shown in in Figure 18.

4.2.1 Control Path

The control path handles configuration of the PsPIN cluster as well as the various data
path components before the actual execution of handler code on the cluster. There are
three important control-path tasks to perform from the host, all of which are implemented
over Corundum’s slow-path 32-bit Advanced eXtensible Interface (AXI)-Lite interface
with an address bus of 16 bits:

∙ to toggle various control registers to the PsPIN cluster and data path components;

∙ to read back standard output produced by PsPIN (i.e., printf); and

∙ to load program code and data onto memory in the PsPIN cluster.
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Figure 18: Overview of the FPsPIN hardware. A description of the hardware function
blocks is shown in Table 2. Blocks marked in green are the modules implemented as
part of this project to bridge the PsPIN cluster to Corundum.

4.2.1.1 Control registers The control registers are configured through the pspin_-
ctrl_regs module. The module exposes an AXI-Lite slave towards the AXI-Lite inter-
connect and converts this into simple valid-guarded interfaces for PsPIN and various
data path components to consume. Some signal groups have requirements on con-
sistency of update, that is, the signals in the same group should always be consistent
and no partial updates should be visible to the components being controlled. Checks
for this requirement happens in the kernel driver. An overview of the exposed control
signals from pspin_ctrl_regs is shown in Table 3.

Name Direction Description

cl_fetch_en O Fetch-enable control to PsPIN
aux_rst O Auxiliary reset for PsPIN and data path
cl_busy I Cluster busy status from PsPIN
mpq_full I Message Processing Queue (MPQ) full status bitmap
match_* O Matching engine configuration
her_gen_* O HER generator configuration
stdout_* O Standard output readback

Table 3: Overview of the control wires exported by pspin_ctrl_regs. The meaning of
these control wires will be introduced in the coming sections.
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Figure 19: Address translation from the Corundum application control space. Access to
the PsPIN host access space always have the top bit as 0; we use the second top bit to
select the correct memory area in PsPIN. Access to the configuration registers have
the top bit set to 1; the 22-bit offset is decoded as the 16-bit control register address
and the top 6 bits ignored.

The control registers module is designed to allow reconfiguration during normal
operation of the system. Therefore, components that take configuration data from the
module are expected to have a explicit valid signal, if they expect consistency between
multiple registers. The software that controls these register would then de-assert valid,
change the registers, and then reassert valid, such that the downstream module can
have a consistent configuration.

We group registers by the subsystem they control (e.g. the matching engine or the
HER generator) and assign a block of address in the control register address space.
We then refine these groups into subgroups that each of them control a specific field
of configuration; some of the subgroups contain multiple identical register instances
(e.g. for multiple rulesets in the matching engine). As shown in Figure 19, the 16-bit
control register address uses the top 4 bits ("grpid") to address the register groups and
the lower 12 bits ("regid") to address the subgroup and register instances. We do not
explicitly define a subgroup field in the address due to different subgroup sizes across
different groups.

Verilog modules that interact with the control register system are written in a template
language, namely Jinja [23], that abstracts the exact register definitions away. A
generator written in Python processes all Verilog templates w.r.t. the register metadata
and emits the final source file ready for synthesis. Such an approach eliminates the
tedious and error-prone maintenance of repetitive register definitions and proved to
be crucial as the number of control wires grows. The generator also derives part
of the kernel driver that later exposes these control registers as described later in
Section 4.3.1.

4.2.1.2 Standard output access To facilitate debugging of handler code on the
PsPIN cluster, we implement a readback mechanism for the characters printed by the
RISC-V cores. The core executes putchar to write characters into the apb_stdout
module. Different cores write to separate addresses exported by the module, allow-
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ing the module to demultiplex the incoming characters. The module enqueues the
characters together with the source core ID in a First-In-First-Out (FIFO). The FIFO is
then read out from pspin_ctrl_regs. To avoid introducing module ports on all levels
of RTL hierarchy, we utilise the hierarchical reference scope [38] feature of Verilog
to connect the output ports from apb_stdout directly. Finally, the host can read back
the enqueued characters by reading out the stdout_* registers through the register
interface, demultiplex, and store the output as logs for future inspection.

4.2.1.3 Code and data download The code and data of the packet handler program
on PsPIN need to be loaded into the program memory in PsPIN before we can start
scheduling packets to execute on the HPUs. The program memory is accessible through
the host slave port on the PsPIN cluster. This port also allows write to the other memory
area, the handler memory, to allow writing either static or dynamic configuration data
by the host. Together, this allows loading compiled PsPIN program images onto the
cluster memory.

We implement such access by connecting the upstream AXI-Lite port from Corun-
dum, through a AXI-Lite interconnect and a AXI-Lite to AXI4 adpater, to the host slave
port. Note that the PsPIN host access address space on the host slave port is 32-bits.
However, we only have a 24-bit address space from the application block control port
from Corundum. Therefore, we perform a compression in the address space by map-
ping the two memory areas closer together into the application control port address
space; we demonstrate this in Figure 19. The FPsPIN kernel module (Section 4.3.1)
will encode the PsPIN memory accesses according to this mapping.

4.2.2 Data Path

PsPIN, being a packet processor, needs to have access to the receive and transmit
paths in the NIC to function properly. We introduce in this section the design and
implementation of the ingress and egress data path engines that gives PsPIN access
to the packet data path.

4.2.2.1 Attach points of the data path Corundum provides access to raw Ethernet
frames over the AXI Stream interface. Three attachment points are available to the
application block for reading ingress Ethernet frames out, as well as injecting egress
frames:

Direct The AXI Stream interface directly after the Ethernet MACs and before most
Corundum modules. The interfaces are synchronous to the MAC clock (322.265625
MHz for 100 Gbps Ethernet). This offers the lowest possible latency from the
application block.

Sync The AXI Stream interface after the clock domain crossing (cdc) FIFO for each
port. These interfaces are synchronous to the Corundum core clock (250 MHz).
They offer comparatively low latency.
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Interface The AXI Stream interface after the main packet aggregation FIFO per in-
terface. These interfaces are per interface (instead of per port; for example a
100 Gbps interface could be split into 4 25 Gbps ports, and are the simplest to
process. They are synchronous to the Corundum core clock (250 MHz).

The Field Programmable Gate Array (FPGA) board we use, as described in detail in
Section 4.5.1, has two 100 Gbps interfaces; each interface can be further split up into 4
25 Gbps ports. For simplicity of implementation, we attach the PsPIN data path at the
interface attach point, such that we don’t have to multiplex traffic from different ports by
ourselves.

4.2.3 Ingress

After a packet has arrived at the interface attach point, multiple tasks need to be done
for an ingress packet before it lands in PsPIN memory and is ready for processing. We
implement four separate functional blocks as follows; together they form the ingress
data path module (pspin_ingress_datapath):

∙ pspin_pkt_match: match if the packet is to be processed by the SmartNIC cluster
or to be forwarded to the normal Corundum data path;

∙ pspin_pkt_alloc: allocate buffer for the incoming packet in the L2 packet buffer,
free the buffer once it finishes processing;

∙ pspin_ingress_dma: DMA write the packet data into the L2 packet buffer

∙ pspin_her_gen: generate the HER to the PsPIN cluster

We explain in detail the design of these modules. Note that common design
considerations presented in Section 4.2.6 apply to these modules.

4.2.3.1 Packet matching engine pspin_pkt_match exposes one AXI-Stream slave
(s_axis_nic_*) towards the upstream packet data that comes from the application
block interface in Corundum. It further exposes two AXI-Stream master ports towards
the downstream packet processing logic. One of them (m_axis_pspin_*) forwards the
matched packet data to the rest of the data path components for further processing.
In addition, the module also exposes metadata for the matched packet over a ready-
valid interface (packet_meta_) providing the downstream components with the following
information:

Message ID from the sPIN lightweight messaging protocol (SLMP) packet header (see
Section 4.4.1 for details of the SLMP protocol), for the HER generator

End of Message (EOM) bit as specified by the matching ruleset, for the HER genera-
tor

Ruleset ID of the matching ruleset, for the HER generator to select the correct sPIN
Handler Execution Context (EXTX)
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Length of the packet, for the packet buffer allocator

Since we need to count the length of the packet, the packet metadata can only be
generated after that the packet has been transferred on the AXI-Stream interface. A
later stage in the data path (the ingress DMA engine) will reverse this dependency by
buffering the packet data.

We adopt a simple approach to define the matching rules similar to the IPTables
U32 match [6]. The matching engine provides a configurable number of rulesets. We
expose ruleset configuration to the host as control registers. Each ruleset is defined by
a configurable number of matching rules for the matching units, which, each one on
its own, matches against a 32-bit word of the packet and produces a boolean output.
Given index I, 32-bit mask M, 32-bit start value S, and 32-bit end value E , the matching
unit output is defined as:

Output := S ≤ (Packet[4I : 4I + 3] & M) ≤ E

Each ruleset defines a mode in which the output from the matching units are
combined into the match output of the ruleset. We currently implement two modes:
MATCH_AND, which combines the match unit outputs with a logical AND; and MATCH_OR,
for a logical OR. The module is designed such that it is easy to add another combination
mode, if such a use case rises (for example an exactly-one combination mode). If
any of the installed rulesets matched on the packet, the module marks the packet as
matched for further processing in the data path. The module then sets the ruleset ID
metadata of the packet accordingly for EXTX selection as described later when we
introduce the HER generator.

The other AXI-Stream master interface (m_axis_nic_*) performs a pass-through of
packets that did not match with any installed rulesets back into the regular Corundum
packet data path. This allows the NIC with PsPIN attached to it to still function as a
normal NIC when PsPIN is not configured. It also enables host processing of traffic
that is not of interest to PsPIN, for example in handling the address resolution protocol
(ARP) as described in Section 4.4.5, or when implementing an application-level control
plane in the Message Passing Interface (MPI) Datatypes application as described in
Section 4.5.4.

4.2.3.2 Packet buffer allocator The packet buffer allocator takes the metadata from
the matching engine and allocates a buffer for the packet in the L2 packet buffer of
PsPIN. It runs the allocation algorithm based on the packet length, adds the resulting
address of the allocated buffer to the packet metadata, and forwards the metadata to
the DMA engine to actually write the packet into the memory. It takes in the feedback
from PsPIN, which denotes that a packet has been processed and its buffer can be
freed, to free the buffer correctly. It further outputs one statistics counter of how many
packets have been dropped due to the buffer being full.

The Verilator model originally developed in the PsPIN project uses a software-based
ring buffer in the simulation testbench to allocate space for incoming packets in the
packet buffer. The free algorithm needs to keep a queue of out-of-order frees and is
thus difficult to implement in hardware. However, most packets on the Internet and in
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data center environments follow a bimodal distribution in size: 40% of packets are below
64 bytes and another 40% are 1500 bytes (the MTU of an Ethernet/IP network) [24,
3]. We thus take a simpler fixed-size allocation approach: we partition the packet
buffer into two halves; in one half we make fixed 128-byte slots, and in the other half
we make 1536-byte slots. We store these free slots in two separate FIFOs. We then
handle allocation and free simply by popping from and pushing to the respective FIFOs.
This way, we greatly simplify the hardware implementation of the allocator while not
sacrificing too much buffer utilisation on internal fragmentation.

4.2.3.3 Ingress DMA The ingress DMA module takes the allocated address and
length in the packet metadata and performs a DMA transaction to write the packet data
to the PsPIN NIC inbound memory port. Upon finish of the DMA request, the module
forwards the packet metadata on to the HER generator in the data path, such that the
packet can get scheduled on the PsPIN cluster. We use the axi_dma_wr module from
the Corundum AXI IP library to perform the actual DMA operation.

One complication to be handled in this module is that the matching engine could
only generate the packet metadata after transferring the packet data on the AXI-Stream
bus. This is due to a dependency introduced by needing to count the length of the
message. While this is handled by introducing a shallow axis_fifo to reverse this
dependency for the DMA module, it would introduce a per-packet latency of the number
of cycles it takes to transmit the packet on the AXI-Stream bus. In addition, the module
has to ensure that the DMA transfer to the PsPIN packet buffer is finished before it
could issue the HER to the cluster due to the current monolithic design of the PsPIN
scheduler.

4.2.3.4 HER generator Once the packet is written to the right place in the L2
packet buffer of PsPIN, the data path can now schedule the packet for processing by
issuing a HER to PsPIN. Part of the information required to generate a HER comes
from the packet metadata, such as the message ID and if the packet is the last in a
message (End-Of-Message, EOM). The rest of the HER stores the address of the
handler functions that the packet should be processed with, as well as the host DMA
and L2 memory regions. We expose a register control interface to the host through
pspin_ctrl_regs.

4.2.3.5 Collective ingress data path pspin_ingress_datapath does not provide
extra logic by itself, as it is simply an instantiation wrapper of the four data path
components. It keeps the parameters in synchronisation among the data path modules
and allows for one single place to pass in custom parameters. It also functions as a top
module for end-to-end simulation and unit tests so that we can validate that the data
path modules have consistent assumptions of how each other operates.

4.2.4 Egress

PsPIN also needs the ability to send packets into the network. This is needed to either
complete a protocol by sending back acknowledgements, or transmit packets to other
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nodes e.g. to implement in-network AllReduce [8] with PsPIN. The transmission of
the prepared egress packet is handled by pspin_egress_datapath; we discuss about
potential problems in preparing the outgoing packet and solutions in Section 4.4.5.

pspin_egress_datapath handles egress commands from PsPIN. With the Corun-
dum IP axi_dma_rd, the module performs a DMA read from the packet buffer and gets
an AXI-Stream bus that contains packet data. It then injects the AXI-Stream into the
outbound AXI Stream of Corundum with an AXI-Stream arbiter (axis_arb_mux). The
arbiter is wired such that the outgoing traffic from PsPIN has priority over egress traffic
from the host for maximum possible throughput from PsPIN. It can also be configured to
use round-robin arbitration to ensure fairness between the host and PsPIN on outgoing
packets.

4.2.5 Host DMA

A feature that distinguishes the sPIN programming model from other packet processing
paradigms intended for intrusion detection (IDS), for example [26], is the ability of packet
handlers to read from and write to host memory. Between PsPIN and Corundum, this is
enabled through the pspin_hostmem_dma module. The module bridges the AXI master
port of the PsPIN cluster to the segmented DMA interface of Corundum [14], which
takes a RAM port and a separate command bus. We utilize the AXI-Stream DMA
client (dma_client_axis_source, dma_client_axis_sink) from Corundum to convert
the output AXI Stream bus to AXI4 channels. For write requests from PsPIN, the
module first issues a DMA command to the AXI-Stream client to capture the write data
in a dual-port RAM buffer (dma_psdpram); it then issues a command to the Corundum
DMA subsystem to DMA the data from the buffer RAM to the host memory. The read
process happens in the reverse order.

There are some notable limitations in this approach, namely that the adapter is not
fully AXI-compliant in multiple corner cases. We do not support irregular bursts (narrow
bursts or modes other than INCR), as well as interleaved read requests. Unlike AXI4,
the PCIe interface also does not support arbitrary byte enable (BE) configurations, so
we also do not support these cases. While it is theoretically possible to handle all these
corner cases, it would lead to very long combinatorial paths of the resulting hardware,
which would then take too much engineering effort to fix. However, these limitations are
acceptable in our use case, since the DMA bus master in PsPIN does not issue such
requests.

One important corner case to implement correctly, however, is unaligned writes.
As mandated by the sPIN specification and also as we later will see in Section 4.5.4,
unaligned transfers are essential to some applications. While it is possible to implement
unaligned transfers in software by reading the affected word first to compose and issue
an aligned transfer, the extra memory read transactions (up to two extra reads for one
unaligned write) would significantly hurt performance. Fortunately, the Corundum DMA
subsystem fully supports unaligned transfers. As AXI4 expresses unaligned writes as
aligned writes with strobe (byte-enable), we implement an address recovery procedure
that calculates the original address and length from the AXI burst strobe (WSTRB) signal
of the first and last beat in the AXI transaction. The module then issues the unaligned
transfer to the client and Corundum DMA subsystem as normal.
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4.2.6 Design Considerations

It is not a goal of this project to achieve the absolute highest possible performance.
The hardware implementations are thus designed with the approach of the simplest
hardware implementation possible. This means that modules with complicated logic
e.g. the host DMA engine are simple state machines without pipelining. We also
do not support concurrent requests, even if the protocol supports it (in the case of
AXI4 on the host DMA engine). For the purpose of a full-system demo, we argue
later in Section 4.5.2 that these design limitations would not impact the overall system
performance.

Another limitation of the hardware performance is in the PsPIN implementation.
PsPIN uses the PULP Ultra Low Power (PULP) [34] RISC-V cores and AXI infrastructure,
which are originally designed for ultra-low-power Application-Specific Integrated Circuit
(ASIC) platforms. This means that they are optimised for recent ASIC process nodes
and thus have long critical paths, making them not suitable for FPGA operation. While
some parameter tweaking allowed us to break very long critical paths e.g. single cycle
bus across the entire SoC, most components need to be redesigned to reach a higher
Fmax on FPGAs.

The lengthy critical paths of PULP and thus PsPIN on FPGAs mean that without
significant re-engineering, the packet processing cluster could only run at a lower
frequency. This situation is further worsened by the area requirements of the original
PsPIN design: the 4-cluster configuration that was used in the original PsPIN paper
proved to be extremely difficult, if possible at all, to place and route on the FPGA
device we are using. We thus use a 2-cluster configuration with reduced memory
sizes. To further resolve the routing congestion problems, we employ the incremental
implementation flow provided by Xilinx as described in Section 4.5.1.

In contrary to PsPIN, Corundum runs at 250 MHz on the target Xilinx devices. While
it is possible to retarget Corundum to run at a lower frequeny, we would to have to
reconfigure the clock domains and validate that the resulting design still works properly;
this is a non-trivial process. Instead, we opted to only run the PsPIN cluster and the
closely coupled data path engines at a lower frequency (40 MHz for the evaluation
in this document; more about the setup in Section 4.5.1). We perform cdc on the
AXI-Lite and AXI-Stream interfaces with standard IP blocks from Xilinx. We isolate
timing optimisation as a separate task and keep it out of the scope this work due to
time constraints of the project.

4.3 Drivers and other Software Components

As described in Section 4.2.1, the hardware design of FPsPIN exposed all slow-path
control flows to the host CPU through the pspin_ctrl_regs. While this simplified the
hardware design by allowing us to omit a dedicated management core on the FPGA,
the job of configuring the hardware now lands on the host CPU. In addition, we also
extended the handler runtime on PsPIN to support the new hardware integration. We
explain in this chapter the different software components developed for FPsPIN. Three
classes of software are required for the full operation of the hardware: Linux kernel
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Figure 20: Overview of the software on the host. Yellow blocks denote existing software,
while blue boxes show software developed in this project’s scope. Note that we use only
standard Unix syscalls (read, write, mmap, ioctl) between the user- and kernel-space.

modules, user-space library and utilities, and the updated handler runtime. An overview
of the software landscape of FPsPIN can be seen in Figure 20.

4.3.1 CPU Kernel Modules

Multiple approaches to access to device memory on Linux exist and most of them
require some degree of kernel-level support. One approach is to expose device I/O
memory access (in the case of PCIe (PCIe) devices, the base address register (BAR))
to user-space through /dev/mem and host memory DMA access through udmabuf [19].
While this approach is commonly used when developing FPGA-based accelerators
in embedded environments, it introduces severe security risks due to exposing direct
physical memory access to the user-space and is thus limited to embedded systems.

The other approach is to have a dedicated kernel module that interfaces with existing
subsystems in Linux and does not expose unconstrained physical memory read and
write (other than for diagnostics purposes). The API exposed by the device driver kernel
module not only greatly reduces the attack surface, but also abstracts away details of
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the hardware between different revisions, facilitating development of user applications
and support libraries. While writing a dedicated kernel module requires experience with
kernel programming, we argue that this is a necessity in hardware development. In
addition, the overhead of doing so has already been greatly reduced by Corundum from
their application block driver templates. This is the approach adopted by Corundum
(mqnic.ko) and in turn by FPsPIN (mqnic_app_pspin.ko).

4.3.1.1 mqnic.ko Corundum ships a kernel driver for the complete NIC functionali-
ties, including interactions with the Linux network stack to expose the device as Ethernet
NICs for packet transmit and receive, as well as control interfaces with ethtool that
reports link status. In addition, it also exposes a device file /dev/mqnicX for the user-
space libraries and utilities to perform management tasks, such as online firmware
upgrade and device reset control.

Corundum provides driver support for the custom application block through the
auxiliary bus framework [2] in Linux. The framework allows splitting drivers for largely
independent functionalities on the same device into different device drivers and thus
different modules to allow compartmentalisation and separated operation. The main
device driver registers an auxiliary device while the sub-component driver registers
an auxiliary driver with the framework. In Corundum, the main driver registers the
application block as an auxiliary device and exposes the application base address (a
separate PCIe BAR) to the auxiliary driver. This allows the custom driver to access the
application block BAR to interact with the hardware.

4.3.1.2 mqnic_app_pspin.ko The driver for FPsPIN configures the PsPIN cluster
and additional datapath components after they are brought out of reset. The driver
exposes two device nodes, /dev/pspin{0,1}, as well as a selection of device registers
over sysfs [28]. All user-space operations during configuration and normal operation
happen through access to these resources using standard system calls (syscalls). In
addition to normal operation, the kernel module checks for additional requirements
imposed by the hardware and rejects requests from the user-space that violates these
requirements. We explain the main functionalities of the kernel module in this section.

4.3.1.3 Control registers The control registers from the hardware are exposed as
access to the application base address from the Corundum auxiliary device. We use
the register generator introduced in Section 4.2.1, regs-compiler.sh, to generate the
respective sysfs node implementations; the register group and subgroup hierarchies
are directly translated into device attributes. The generative approach keeps the driver’s
view of the device registers consistent with actual hardware. We implement consistency
checks of data-path engines via internal flags that are kept in sync with the respective
enable registers, such that only valid and consistent configurations can be latched into
hardware.

By exposing the hardware registers directly to user-space through sysfs, we adopt
a user-space-centric approach to hardware configuration. This means that most
configuration logic will be implemented in a user-space library (Section 4.3.2) instead of
directly baked into the kernel module. This allows more flexibility in the implementation,
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since we do not need to update the kernel module as often; it acts more as a shim that
only enforces basic safety and forwards other requests directly to the hardware. This
approach also offers more protection against programming errors when implementing
the configuration routines, as errors in the user-space cannot crash the kernel.

4.3.1.4 Standard output read-back Recall that as described in Section 4.2.1, the
handler processing unit (hpu)s write their standard output into a FIFO for the host CPU
to read for diagnostic purposes. The FPsPIN kernel driver exposes the /dev/pspin1
character device to the user-space. For simplicity, the raw word sequence read from the
hardware FIFO is directly exposed: each 4-byte word encodes one character as well as
which hpu wrote this character. A user-space script later introduced in Section 4.3.2
would de-multiplex this stream and write a log file for each hpu.

In the current design and implementation, the standard output device file is on-
demand, meaning that data will be fetched from the FIFO only when a user-space
program reads from the device file. This has the potential issue of the hpus writing
too fast to overflow the FIFO, resulting in a partially lost and corrupted output buffer.
An alternative design is to run a kernel worker (also known as a kernel thread) that
continuously polls on the hardware FIFO and actively fetches the standard output data
as soon as it is available. However, this would result in a constant overhead for busy
polling and wouldn’t be ideal if we do not care about the debug output. We thus stick to
the current on-demand design.

4.3.1.5 PsPIN memory access As part of the configuration process, the host needs
to download the code and runtime data for the hpus onto NIC memory. As explained
in Section 4.2.1, a technicality due to the small Corundum control port address space
mandates a static address mapping when accessing PsPIN memory from the host. The
kernel module implements this mapping and maintains the plain address view; requests
that does not land in a valid memory area will be rejected with a SIGBUS (bus error
signal in Linux) to avoid disrupting the hardware. We hide the translation technicality
away and never expose the exact mapping details to the user-space.

The kernel module exposes two flavours of APIs to the user-space for accessing
PsPIN memory, designed for different use cases. The first flavour conforms to the tradi-
tional non-buffered Unix file I/O: we implement the open(), seek(), read(), write(),
and close() syscalls on the /dev/pspin0 character device. Reads and writes to the
device file are directly translated into reads and writes in the NIC memory region. This
flavour is suitable for bulk read or write on the PsPIN memory area and would be used
during program image load or debug memory dumping. It allows existing, unmodified
Unix user-space utilities such as dd [20] to work as diagnosis tools and quick prototypes.

The second flavour is implemented as ioctl() over the /dev/pspin0 device file. An
ioctl (input/output control) is a syscall for device-specific I/O operations. The syscall
allows the user-space application to pass a pointer to the kernel to read or modify, along
with an ioctl number to denote the operation desired. We implement two ioctls, PSPIN_-
HOST_WRITE and PSPIN_HOST_READ, allowing the user-space to read and write 64-bit
words in one action. This simplifies the implementation of host DMA and performance
counters user-space routines (Section 4.3.2) and reduces the syscall overhead. In
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comparison, the traditional Unix file I/O approach would require two separate syscalls
(seek() and read() or write()).

4.3.1.6 Host DMA Memory pages used for DMA on Linux have to be registered with
the kernel to ensure that cache coherency and alignment requirements are fulfilled. It
is also important to make sure that the memory page used for DMA are not moved
by the kernel through swapping or memory compaction (through kcompactd). The
easiest way to ensure these requirements is to have the kernel module allocate the
DMA buffer through the DMA API, which takes care of these requirements automatically.
We implement the mmap() syscall for the /dev/pspin0 device to perform a multi-use
DMA allocation (as opposed to single-use; termed as coherent by Linux, but does not
actually imply cache coherency). We then mark the area as uncached and map the
allocated DMA memory area into the user application address space to allow user
processing of host DMA traffic.

Since we adopt a user-space-centric approach regarding the configuration registers,
the user-space needs access to the physical address4 of the mapped DMA area to write
to the control registers. We implement another ioctl on /dev/pspin0, PSPIN_HOSTDMA_-
QUERY, to allow the user-space to query the physical address of the DMA area, in order
to program the EXTX to the data-path engines, specifically the HER generator.

The multi-use DMA buffer allocations we use suit the purpose of a DMA buffer shared
between the CPU and device over a rather long period of time. However, in the practice
of implementing NIC drivers, the single-use allocation scheme is more commonly used
and allegedly more performant due to the possibility of taking advantage of the cache.
It is possible to take advantage of this approach in FPsPIN by using a separate DMA
area per message, as opposed to the current strategy of one area per EXTX.

4.3.2 CPU User-Space

The user-space software for FPsPIN caters to three distinct purposes in system opera-
tion: configuration of the system to bring it into operative state; runtime that supports
the host-side application to interact with the NIC; and several utilities to aid system-wide
setup as well as to perform troubleshooting. They interact with the various facilities
provided by the mqnic_app_pspin.ko kernel module. The user-space software shipped
with FPsPIN are either packaged into a static library, libfpspin.a, along with the
header files, or as standalone programs or scripts.

4.3.2.1 Configuration The main configuration routine is packaged in libfpspin.a
as one function: fpspin_init. It takes as input the device node exposed by the kernel
(by default /dev/pspin0), the separately-built sPIN handlers image, the ID of the EXTX
to use, and a number of rule sets for the matching engine. The user can either select
existing rule sets that match against common protocols, e.g. Transmission Control
Protocol and the Internet Protocol (TCP/IP) or User Datagram Protocol (UDP) over
IP/Ethernet, or define their own rule sets by filling in the fpspin_ruleset_t struct that

4On a system with an I/O memory management unit (IOMMU) enabled, this is actually the bus
address as seen by the DMA bus masters in the device.
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contains configurations for each matching unit (review Section 4.2.3 for more details).
fpspin_init configures all the device registers over sysfs, loads the sPIN handler
image, and also allocates the host DMA area by requesting through mmap upon the
kernel. It then fills in all necessary addresses and handles in the context variable
fpspin_ctx and returns this to the user. All future interactions with the runtime takes
the context as an argument.

After a successful return of fpspin_init, FPsPIN is ready for packet processing.
However, in complicated applications e.g. the datatypes demo shown in Section 4.5.4,
the user may wish to perform additional initialisation, e.g., loading dynamically generated
data into the NIC memory. This is accomplished via the host access to NIC memory
interfaces provided in libfpspin.a, namely fpspin_write_memory, allowing the host
to generate the NIC memory content in the host application at runtime. The host
application needs to take care of relocation so that data structures contain valid NIC
pointers when they are accessed by the hpu in operation.

While the basic initialisation via fpspin_init programs the matching engine as
the last step such that no packets can arrive at the cluster until it is fully configured,
host-side user initialisation happens after the hpus have started execution. As a result,
the user needs to ensure that the sPIN handlers do not start processing packets until
the host initialisation process is finished, e.g. through a flag that gates all hpus from
running. The exact mechanism and interface requirements are further discussed in
Section 4.4.6 as a possible extension to the sPIN specification.

It is important that the host CPU should be able to perform other workloads, such
as computational tasks, during packet processing in a truly offloading manner. The
host application can overlap other workloads via multi-threading or by anticipating the
inter-message gap (IPG) and polling only when there could be a message arriving.
For simplicity, the current flags-based host DMA notification facility can only hold
one in-flight message between the host and each hpu; this limits the duration of
overlapped workloads between polling to be one IPG. The overlap can be increased
by implementing a proper ring buffer for the notification, which we leave as a possible
future improvement.

The host application may still need to receive and send network packets on the
same interface, for example to implement the slow, non-performance-critical paths
of a network protocol, like connection setup and tear-down in TCP/IP. The intended
operation for this purpose is via the host network stack, either normally or through the
raw sockets (in case of state confusion due to partially offloaded messages). The user
needs to correctly configure the matching engine, so that these packets are actually
delivered to the host CPU and not to PsPIN. Alternatively, if it is difficult to express the
criteria in the matching rules, the user can make the handlers perform a secondary
match and deliver such packets to the host over host DMA.

Performance measurements are important to estimate bottlenecks of packet pro-
cessing. The runtime provides facility to read and clear performance counters exposed
by the handlers. Up to 16 32-bit counters are accessible from the host application via
fpspin_get_counter and fpspin_clear_counter. Each counter keep track of a total
sum and iteration count of updates, enabling the calculation of an average value. The
counters are updated in the packet handlers using a facility in the handler runtime.
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Figure 21: Simplified view of the host DMA loop, in chronological order. The hpu sends
a request to the host for processing, by writing to the flag in host memory; the host polls
and pops the request from local memory; the host pushes the response by writing to
the flag in NIC memory; the hpu polls and pops the response from local memory.

4.3.2.2 Utilities In addition to the libfpspin.a library to be statically linked into the
user application, we also provide several standalone utilities that are important to the
normal operation of FPsPIN. One of these is cat_stdout.py that reads from the log
facility, /dev/pspin1, provided by the application kernel module. The script performs
blocking read on the log device and demultiplexes the stream of printed characters
according to the core ID. The user can specify whether to dump the log to files and if the
script should remove stale logs. The script is provided separately instead of integrated
into the runtime, in case of an application that does not care about the debug output
from the hpus and thus does not want to waste CPU cycles to read them.

During the development and testing of handlers, it may be necessary to read or write
specific memory locations in the NIC L2 memory. The mem utility takes a NIC address
and performs a 64-bit read or write command over the ioctl interface provided by the
kernel module. It is possible to implement a more complicated debugger protocol with
memory access in this fashion; we leave this as future work.

4.3.3 Handler Runtime

The PsPIN project provided a rather comprehensive implementation of the handler-side
sPIN API through the PsPIN/PULP runtime. This includes the HER and task data
structures, as well as host DMA commands for the handler code to invoke. A few
additions are made to accomodate new abstractions introduced by FPsPIN. One of
such additions concerns packet header processing. The existing PsPIN runtime already
provides C structs for interpreting headers for IP and UDP, but since FPsPIN directly
receives Ethernet frames instead of the IP payloads of a lower-level messaging network
layer, we added the Ethernet header structs for this situation. We also implement
support for the SLMP, introduced later in Section 4.4.1, in the same manner in the
FPsPIN runtime.
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4.3.3.1 Performance measurements The host-side runtime has support for reading
back performance counters generated by the handler routines; these counters are
updated through the handler runtime on the hpu. Each 64-bit counter consists of
two 32-bit fields, the sum and count, allowing the handler logic to push a specific
performance value into the counter with the push_counter routine. Every time the
counter is incremented, the count field is incremented by one. The counters sit in
L2 memory accessible to the host and are initialised to zero on cluster setup. These
counters can be used to collect various statistics such as handler execution time at
handler or message granularity, as well as to profile specific code areas in the handler
routines.

The counter values for performance measurements are derived from the cycles
register in PULP that is only accessible to machine-mode, while the handler code
executes in user-mode. We extend the existing fault handler in the PsPIN runtime to
handle syscalls and implement a syscall to read the cycles register. With the current
naïve implementation, this syscall path takes around 100 cycles on the PULP cores, in
which most of the time consumed comes from the need to save and restore all general
purpose registers. While it is possible to optimise this path for a lower latency, a proper
solution is to address the lack of a user-accessible time register for precise performance
measurements as we will argue in Section 4.4.3. We leave the related changes to
hardware as future work.

4.4 Proposed Changes to the sPIN — Lessons Learned

The process of building FPsPIN has uncovered various aspects in the sPIN specification
that are important in a real-world system but left unspecified. We have reported
the findings in this chapter to the sPIN team and some of them have already been
incorporated back into the specification.

4.4.1 Messaging and Reliability Layer: SLMP

The sPIN specification did not impose a fixed list of underlying network protocols;
instead, it specifies two matching modes of the underlying network. In packet matching,
single packets are matched for processing on the packet handler in the same flow;
Ethernet would be an example of a network operating in this mode. Message matching,
on the other hand, requires the network to provide an abstraction of messages as a
stream of multiple packets; they are in turn mapped onto the head, packet, and tail
handlers for processing. Examples of a network operating in message matching mode
are Remote Direct Memory Access (RDMA)-style networks such as InfiniBand or the
Intel Omni-Path Architecture (OPA).

Although FPsPIN is built on Ethernet, which would seemingly force a packet match-
ing implementation, many applications still benefit from the message-oriented abstrac-
tion sPIN offers; there would be significant hpu and memory overhead to perform
flow matching and differentiate the handler code paths in software, as opposed to the
MPQ-based hardware flow matching mechanism introduced in PsPIN. As a result, it
is desirable to emulate the message abstraction on top of Ethernet. In addition, since
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Ethernet is a lossy network5 but traditional high-performance network applications such
as MPI expect that messages do not get lost in the network, we also need guarantee
on reliable delivery of messages on top.

We developed a thin messaging and reliability layer built on top of UDP/IP for
FPsPIN, which we named sPIN lightweight messaging protocol (SLMP). The protocol
features a 10-byte header inside the UDP payload with the following field definition:

Flags (2 bytes) hosts three packet-level status bits, syn, ack, and eom. The remaining
bits are reserved for future versions of the protocol.

Message ID (4 bytes) unique ID of the message.

Offset (4 bytes) byte offset of the first payload byte in the message.

The message ID and offset fields together implement up to a message size of 4 GB,
limited by the 4-byte offset field in the SLMP packet header. We believe that this is
a sensible limitation and most applications would not generate messages larger; for
applications that require larger messages, we could adjust the size of the offset field
in a case-by-case fashion. Although the offset field maintains a order among all the
segments of a message, we do not implement any in-order delivery guarantees.

A possible alternative for the offset field is to use a packet sequence number instead
of a byte offset. This is a design choice made to accomodate the SLMP file transfer and
MPI datatypes applications we will introduce in Section 4.5.1; these applications process
incoming segments according to their byte offset in the whole stream. Therefore, by
storing the offset number directly in the SLMP header, we eliminate the need to keep
protocol states on the receiver, allowing a fully stateless receiver for handling the
protocol.

We handle the reliability requirement through the syn and ack bits in the flags field
in the SLMP header. The action rule for the receiver is simple: each packet that has
a syn bit set in the header needs to be ack’ed by sending back the same header with
no payload. The sender decides on what reliability mode the protocol operates in. For
no guarantee at all, the sender omits the syn bit for all packets. For a guarantee of
message delivery but not individual segments, the sender sets syn on the first and last
packets of the message. For a guarantee of every single segment, the sender sets
syn on all packets it transmits. We do not implement retransmission for SLMP at the
moment for simplicity, but it should be easy to add since our acks carry the message ID
and segment offset and thus would allow the sender to identify a lost segment.

4.4.2 SLMP flow control

If the sender would transmit packets too fast to the receiver, the receiver would be
overwhelmed by incoming packets before it had time to process them; packets would
be dropped once the receive buffer is completely filled. Flow control throttles the sender
to make sure that the receiver is not overwhelmed. Generally speaking for maximum

5While RDMA over converged Ethernet (ROCE) does provide a lossless guarantee on top of Ethernet,
it is not supported by Corundum at the time of this project and is not trivial to implement in hardware. We
thus consider ROCE irrelevant for this discussion.
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throughput, the sender needs to first fill up the receiver’s buffer at a higher send rate,
then lower the rate to the processing speed of the receiver to maintain the occupation
rate of the receiver buffer in order to saturate the receiver’s processing power.

There are two modes of flow control in SLMP, depending on the reliability config-
uration selected. When the sender operates without reliable packet delivery in the
form of acks from the receiver, a heuristic inter-packet gap (IPG) is chosen based on
the workload, receiver’s capability, as well as possible buffer state reports from the
receiver (see Section 4.4.3 for more details). This form of flow control requires almost
no collaboration from the receiver and can be implemented fully on the sender side.
However, a practical configuration would fix the IPG and thus the sending rate, which
must be equal to or lower than the receiver processing speed for long term stable
operation; this would under-utilises the receive buffer and result in the receiver waiting
for data, hurting throughput.

A well-known mechanism that originated from TCP/IP but found its way into most
flow control schemes is a flow control window6. The sender maintains a fixed window
of packets that has not yet been ack’ed by the receiver and would only send when the
window has free space to fit a new packet, allowing the sender to automatically throttle
down to the speed of the receiver after the window is filled. Assuming constant sender
and receiver speed vSend and vRecv, we can calculate the ideal window size SWnd for a
receiver buffer size SRecv:

tFill =
SRecv

vSend − vRecv
(1)

SWnd = tFill · vSend (2)

= SRecv ·
vSend

vSend − vRecv
(3)

The sender window approach to flow control still requires the window size to be
determined in some manner. For simplicity in implementation, we assume the suitable
window size is relatively fixed for each SLMP conversation and let the user specify the
window size manually.

An interesting side-effect of allowing explicit control of the flow control window size is
that, by setting the window size to 1 packet, the sender can serialise packet processing
on the receiver side, only sending the next packet of the message after receiving ack
for the previous one. While doing this severely limits the top throughput available, the
serialisation guarantee is important since sPIN did not specify any concurrency control
mechanism on the scheduler level (discussed later in Section 4.4.4). We use this
method to avoid packet-level parallelism for the MPI Datatypes demo application in
Section 4.5.4.

4.4.3 Telemetry

The ability to measure the performance of a system is crucial to further improve it. While
the current sPIN specification formalised performance-related events to be delivered to

6This is called the sliding window in TCP/IP due to the additional in-order delivery requirement.
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the host for further analysis, this is vastly different from the common practice of imple-
menting performance counters for detailed system-level inspection. Therefore, we call
for a general interface of host access to various implementation-defined performance
counters in hardware, as well as user-controllable counters updated from the handler
software.

We integrated a prototype of memory-backed general purpose counters for packet
handlers in Section 4.3.2 to allow intrusive inspection of handler performance in the
ping-pong demo in Section 4.5.3. For low-overhead updates to these user-controllable
counters, an implementation should make accurate cycle counters available to user-
level handler code. While we recognise the exposure of accurate timing information is a
break of isolation, the current sPIN specification does not handle multi-tenancy yet; we
leave this discussion for a possible future work that would explore operating system
paradigms on sPIN.

Another compelling use case for telemetry data apart from off-line host performance
analysis is for consuming in the sPIN NIC itself, better known as introspection. One use
case would be for the scheduler to have access to the handler execution time counter
for fair scheduling between multiple EXTXs.

4.4.4 Scheduler Concurrency Control

The current sPIN scheduler enforces the dependency between packets in a message
w.r.t. the three categories of packet handlers: the head handler is guaranteed to be
scheduled before all packet handlers, and the tail handler is guaranteed to be scheduled
after them; the packet handlers will be scheduled in parallel if possible. In some use
cases however, the packet processing routine may require serial execution; the MPI
Datatypes demo application we will introduce in Section 4.5.4 is an example.

With the current sPIN specification, the only viable synchronisation primitive is
spinlocks that would allow one hpu into the critical section for serial processing. This
is far from ideal, since without an effective task switching method, all other hpus will
busy-loop at the spinlock, effectively reducing the number of hpus down to one. A
workaround currently used by the MPI Datatypes demo in Section 4.5.4 is to force the
SLMP flow control window to 1 packet, effectively requiring ack on every packet and
thus serialising packet processing. Such a workaround is still not ideal, since such a
small window size would mean that the hpu would always have to idle for one rtt plus
the sender latency for one packet before it can start processing the next packet. It also
forces the developer to put the per-message state in the globally-shared L2 memory,
since there is no guarantee which hpu the next packet will be scheduled to, making it
impossible to use the cluster-local L1 memory.

We propose the addition of core masks to all sPIN EXTXs for fine-grained control
on the locality and parallelism of sPIN handlers. With the current FPsPIN architecture,
the core masks are installed into the HER generator and copied into the HER to
the scheduler. The scheduler can then schedule the packet on the subset of cores
specified by the core mask in the HER. This design can support the use case of
serially scheduled handlers by programming a mask that contains one single core;
message-level parallelism can be achieved by installing multiple otherwise identical
EXTXs that have different core masks. Another possible use case is to specify a core
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mask of all cores in one cluster to allow the shared states to be stored completely in
the cluster-local L1 memory.

4.4.5 Network-layer Protocol Handling

So far, sPIN assumes that the packet handlers only process the application payloads
carried by the underlying network protocol. However, as we have shown in Section 4.4.1,
extra protocol-layer processing is required for a lossy underlying network like Ethernet.
While in some situations protocol handling itself is the main offloaded workload (e.g.
accelerating QUIC), we recognise that most of the sPIN applications care more about
the actual payload instead of details in the protocol itself. Examples of such protocol-
level handling include running ARP for outgoing packets, handling connection setup
and teardown in TCP/IP, and sending the explicit buffer state messages in SLMP.

One approach to this issue makes use of the bypass feature of the matching engine.
The user can configure the matching engine to pass incoming protocol control packets
to the host for handling, possibly updating relevant states in the meantime. Examples
where this approach would work include ARP responses, in which the host updates the
IP neighbour table and sends back the ARP response, and TCP/IP connection setups
and teardowns, where the host handles packets that have the syn or FIN bit set. This
approach would not work very well for NIC-initiated actions (e.g. an active ARP query
for an outgoing packet from the sPIN NIC) as well as protocol messages on the hot
path (e.g. the buffer state notification of SLMP).

An alternative approach is to introduce a dedicated system-level coprocessor for
handling such protocol requests. This coprocessor would handle network-layer control-
path tasks, freeing the hpus from these. It would take requests from the hpus through a
mailbox-like interface, e.g. to run an ARP query or setup a SLMP or TCP/IP connection
with a remote endpoint. It could also run local periodic tasks such as sending back
telemetry data to its link partner, or take action on specific protocol control messages
forwarded from the scheduler. The coprocessor would also be crucial for potential flow
spilling to the host when the sPIN NIC is overloaded.

4.4.6 Handler Initialisation

Complicated applications may require dynamic initialisation of application-level states
on the NIC memory. However, the current sPIN specification would start scheduling
packets to EXTXs as soon as they are installed, resulting in a race condition. However,
since the installation of an EXTX on the host would also allocate NIC memory windows
and set up memory protection, it is required before the host can actually perform
initialisation.

A potential solution is to separate the installation and activation of EXTXs. The
installation of an EXTX would arm all relevant hardware modules, allocate memory
windows, and set up memory protection; the activation actually enables the respective
matching rule on the matching engine for packets to arrive and get scheduled. The
actual initialisation can happen on either the host (through NIC memory access) or as
a special function in the handler image to run on a hpu.
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4.4.7 Host-side Activation

So far sPIN has only been formalised for offloading packet processing tasks on a
receiver; although [10] contemplated a possible sPIN-Out implementation that would
allow the host to offload sending tasks e.g. in AllReduce to a sPIN NIC, the specification
did not formalise on how such an EXTX would be defined. We propose host-activated
EXTXs that are triggered via a special host-initiated event. With the FPsPIN architecture,
this can be implemented via adding extra configuration registers to the HER generator
to inject a HER whenever the host wants to invoke the EXTX. To avoid confusion, such
an EXTX should always have the corresponding matching rule set to never such that it
never gets invoked from incoming packets.

4.4.8 Alternative Host DMA Interface

sPIN specifies the host DMA facility in a very simple manner: the hpus can read
from or write to the exposed flat memory window. While this abstraction is concise to
implement and allows , it is not very helpful for end users of a sPIN NIC; they would
have to implement their own interface on top of this facility. The fact that sPIN does
not specify any memory consistency semantics on the host memory window makes
any user implementations non-portable and thus impossible to work with other sPIN
implementations.

We developed a simple request/response interface on top of the host DMA window
in FPsPIN as we described in Section 4.3.2; the current design largely resembles a
traditional queue pair design, allowing the hpus to post requests in the receive queue
to the host and the CPU to post responses back to the hpus in the completion queue.
We propose the addition of higher-level APIs for communication between the host and
sPIN NIC, which would simplify user programs that make use of host DMA and improve
portability.

4.5 Evaluation

In this chapter, we evaluate the software and hardware implementation of the proposed
FPsPIN platform. We first describe the platform we implemented FPsPIN on. We
then present an analysis of the hardware components proposed in Section 4.2 to
identify potential bottlenecks in the hardware design and implementation. Finally, we
demonstrate the overall functionality and performance of the system through several
demo applications.

4.5.1 Experiment Setup

The experiments are done on the AMD server with the Ryzen 7 2700 CPU and the
PCIe-attached Xilinx VCU15257 Development Kit. We run the FPGA board at 16 lanes
of PCIe 3.0 clocked at 8 GT/s. A diagram of the experiment platform is shown in
Figure 22. Corundum runs at its native frequency of 250 MHz on the Virtex UltraScale+

7https://www.xilinx.com/products/boards-and-kits/vcu1525-a.html
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Figure 22: The experiment setup. The sPIN and non-sPIN host applications are in two
separate network namespaces to prevent the direct loop-back mechanism in Linux that
prevents packets from actually going through FPsPIN.

FPGA. However, we could only run the application block (FPsPIN) at 40 MHz due to
the PsPIN IP not being designed for FPGAs: the PULP RISC-V cores are designed for
an advanced ASIC process node and have long critical paths on FPGAs. As a result,
we clock the processing cluster at 40 MHz.

4.5.1.1 Networking The two 100 Gbps QSFP Ethernet ports on the FPGA board
are attached via one direct-attached copper (DAC) cable, forming a loop-back between
the two interfaces of Corundum. Since the two interfaces are present on the same Linux
host, we have to isolate the two network interfaces into separate network namespaces
to avoid a direct loop-back in software. The exact network topology of the system can
be seen in Figure 22. A script, setup-netns.sh, automates the creation and tear-down
of network namespaces and assignment of the interfaces to them.

4.5.1.2 Toolchain We use Ubuntu 20.04.4 LTS on the host with a slightly modified
Linux 5.15.0-76-generic kernel with the CMA enabled; this allows the FPsPIN kernel
driver to allocate arbitrarily large contiguous DMA areas, as is required by demo
applications shown later in Section 4.5.3. We use Xilinx Vivado 2020.2 to produce the
FPGA bitstream, the PULP RISC-V toolchain8 to compile the sPIN handlers, and the
Ubuntu system GCC for the host-side applications.

8https://github.com/pulp-platform/pulp-riscv-gnu-toolchain
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Module Cycles Frequency (MHz) Latency (ns)

Matching engine 4 40 100
Allocator 0 40 0
Ingress DMA 8-70 40 200-1750
HER generator 0 40 0
Host DMA n/a 250 450

Table 4: Latency estimation for various data path modules in cycles and nanoseconds.
Note that as the host DMA goes over PCIe to the host DRAM, the exact latency in
cycles is difficult to estimate; the latency in nanoseconds is measured on real hardware
via the Integrated Logic Analyzer (ILA) on Xilinx platforms.

4.5.2 Design Analysis

To evaluate the implementation quality of the newly introduced data-path components,
we estimate the theoretical latency of these components as described in Section 4.2
based on the RTL source. Table 4 shows the latency in cycles based on the state
machine construction in the Verilog RTL code, the frequency, and the latency time in
nanoseconds. The pspin_ingress_dma module has a latency linearly related to the
packet size due to dependency requirements as introduced in Section 4.2.3. We show
in the later sections that these latency numbers are negligible compared to other parts
of the system and thus would not have a big impact on overall system performance.

Resource utilisation and timing are very important static insights into FPGA designs.
While we have trimmed the original PsPIN design significantly compared to the standard
configuration [11] as shown in Table 5, the design is still very hard to close timing due
to congestion issues. We present in Table 6 data in resource utilisation, timing, and
time taken to implement the design. To ensure that we get acceptable implementation
results for each run, we employ the incremental implementation flow [21] from Xilinx
to have the Electronic Design Automation (EDA) tool try to reuse routed nets from
previous valid implementation runs. This shortens implementation time and improves
the general Quality of Results (QOR) of the resulting design.

We present three e2e demo applications to showcase the real-world programmability
and performance of FPsPIN. We show that it is possible to write packet-processing
applications for the platform. We further characterise the performance of the platform in
detail with the MPI Datatypes demo.

4.5.3 Ping-pong

4.5.3.1 Motivation We demonstrate the overall system functionality with two classic
types of ping-pong protocols: Internet Control Message Protocol (ICMP) and UDP.
With this demo, we exercise the various data-path and control-path components newly
introduced in FPsPIN to show their basic functionality. In addition, we evaluate the
system e2e rtt under simple packet processing workloads to compare with pure-CPU
processing. We further identify rtt contributions from different actors in order to evaluate
bottlenecks in the system.
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Resource Category [11] FPsPIN

Clusters 4 2
#MPQ 256 16
L1 Cluster Memory 1 MiB 256 KiB
L2 Program Memory 32 KiB 32 KiB
L2 Packet Memory 4 MiB 512 KiB
L2 Handler Memory 4 MiB 1 MiB
L2 SRAM Latency (cycles) 1 1

Table 5: ]
Comparison between the stock PsPIN configuration and that used in FPsPIN. The

MPQ enables parallel in-flight messages; by reducing the number of queues available,
we limit the number of concurrent in-flight messages to 16.

QOR Metric Value

lookup table (LUT) 645k 54.5%
Flip-Flop (Flip-Flop) 490k 20.7%
Block-RAM (BRAM) 1141 52.8%
Ultra RAM (URAM) 206 21.5%

worst negative slack (WNS) (ns) -0.057
total negative slack (TNS) (ns) -9.945

Impl. Time 6:11:15

Table 6: QOR metrics of the hardware implementation of FPsPIN. The first four entries
(LUT, Flip-Flop, BRAM, URAM denote key resource consumption and the percentage
utilisation value on the VU9P device; WNS and TNS measure how much the design
has failed timing.
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Figure 23: Workflow of the two ping-pong applications. 1) Normal operation; the cluster
processes incoming ping requests and sends back responses (FPsPIN). 2) The cluster
can optionally choose to forward data to the host application for further processing
(Host+FPsPIN).

4.5.3.2 Experiment We implement on FPsPIN the server to respond to client re-
quests; the operation flow of the server is shown in Figure 23. Both protocols operate
in the same way that the client sends a request packet and the server sends back
a response. The server needs to swap the source and destination addresses in the
Ethernet, IP, and UDP headers, and recalculate relevant checksums. For each protocol,
we implement three different modes of operation:

∙ the baseline a.k.a. host-only case (Host): all processing on the CPU by setting
the FPsPIN matching engine to bypass mode;

∙ the FPsPIN-only case (FPsPIN): FPsPIN does all the packet processing (header
processing and checksum calculation);

∙ the combined case (Host+FPsPIN): FPsPIN swaps the addresses in the headers
and the host CPU calculates checksums.

We use the ping utility from iputils [22] for ICMP and dgping from the stping suite [25]
for UDP. For Host mode, we use the responder in the Linux kernel for ICMP and the
user-space dgpingd for UDP. For both the FPsPIN and Host+FPsPIN modes, we use
the same naive IP checksum algorithm implementation.

An important difference between the UDP and ICMP ping protocols is that ICMP
requires the entire payload to be included in the calculation of the checksum field, while
UDP only specifies an optional checksum of the UDP header ; we omit this header
checksum in our UDP ping server implementation on FPsPIN. This difference between
the two protocols impacts both the server and client implementation, but is especially
significant for the server since the rtt measurements taken at the client do not include
packet preparation and checksum validation time on the client side.

For both ICMP and UDP and the three modes of operation, we measure the e2e rtt
of the ping-pong process from the client by running the ping program 20 times, taking
100 measurements in each iteration. This would take into consideration any possible
interference between the ping client and server that would result in variance in the
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Figure 24: e2e rtt of both protocols across the three setups. We plot the median and
95% confidence interval of the rtt of 20 measurements for each configuration.

measurement, as well as to allow caches to warm up. We plot this e2e rtt with their
medians and 95% confidence intervals calculated with the bootstrap method [12] in
Figure 24. In addition in cases that involve FPsPIN, we measure cycle counts in the
handler code to time the mean handler execution time and latency of host processing.
We plot a breakdown of the e2e rtt in these cases in Figure 25. Please note that the high
overhead designated as Syscall is due to the lack of a cycle-count register accessible
to user-space handler code; we discussed this situation and possible solutions in
Section 4.3.2 and Section 4.4.3.

4.5.3.3 Data interpretation A key observation we make is that both FPsPIN and
Host+FPsPIN performed significantly better than Host for UDP, with a largest latency
advantage of 50 µs in FPsPIN mode. This is mainly due to the packet data in FPsPIN
modes not having to go through PCIe to get DMA’ed to host memory, go through the
Linux UDP network stack, and context switch to user-mode to reach the UDP responder.
The ICMP responder in Host, in comparison, runs in the Linux kernel and thus does
not have the overhead from the full UDP stack and context-switch to user-mode. This
overhead can be confirmed with a comparison between UDP and ICMP in Host mode,
showing a difference of 41 us. As we see in Figure 25 in Host+FPsPIN for UDP,
our system reliably achieves a 20 us rtt advantage over the baseline case even with
the added latency from host processing. In addition, we notice that in all four cases
with FPsPIN the syscall category occupies 10-20 us in the rtt. As we have previously
explained in Section 4.3.3, this added latency is due to a lack of user-mode accessible
cycle counters and should be easily fixed in future work.

We notice a big divergence in the course of e2e rtt w.r.t. payload size between
ICMP and UDP in Figure 24: in the two modes that involve FPsPIN for ICMP, the rtt
increases almost linearly with the payload size; while in the Host mode for ICMP as
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Figure 25: Breakdown of the e2e rtt into different categories. The timeline at the top
shows the time-series relationship between the various time components (not to scale):
Syscall, time spent reading the cycles counter from trapping into M-mode; Handler,
time spent executing the packet handlers, excluding waiting for host; Host Proc., time
spent waiting for host DMA and processing on the CPU; and Sender, time spent on the
Ethernet wire and client side. Baseline marks the median e2e rtt in Host mode.
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well as all three modes for UDP, the rtt remains relatively constant. This reflects the
difference in checksum calculation between the ICMP and UDP ping protocols, showing
that checksum calculation time is a significant component of the ICMP response rtt.
A comparison between the Host+FPsPIN and Host modes for ICMP in Figure 25
reveals that the Linux kernel’s ICMP responder uses extremely optimised code paths,
highlighting room of improvement in our IP checksum algorithm.

We further observe that the lower frequency that PULP cores in FPsPIN run at
have a significant impact on packet processing latency. This is confirmed by Figure 25
between Handler on FPsPIN and Host Proc. on Host+FPsPIN for ICMP. It shows that
a single core on FPsPIN is only 2.8x slower than a single CPU core, a gap way smaller
than the actual performance difference between these cores (40 MHz vs 3.4 GHz).
Part of this small performance gap comes from the fact that the host CPU performance
in checksum calculation is far from ideal due to the CPU always issuing uncached
requests to the host DRAM as a result of a lack of cache-coherency over PCIe. In
addition, the host processing category also includes one PCIe rtt between the host
CPU and FPsPIN and polling latency, both of which are not present on FPsPIN.

4.5.3.4 Conclusion The rtt advantage from FPsPIN against the CPU-only Host
case shows that FPsPIN allows packet processing with lower latency, thanks to its
proximity to the data and lack of context switch overheads. The ICMP cases show that
FPsPIN still has plenty of potential for higher performance in packet processing from a
faster core built for FPGAs, optimised code that reduces handler execution time, and
domain-specific accelerators for compute-heavy workloads like checksum calculation.

4.5.4 MPI datatypes

4.5.4.1 Motivation Apart from synthetic benchmarks like the ping-pong demo we
showed in the previous section, we also need to demonstrate the ability of FPsPIN to
run real-world sPIN workloads. MPI Datatypes are a popular mechanism for exchanging
custom messages over the MPI paradigm commonly used in parallel computing. On
the sender side, the datatypes subsystem in MPI serialises the custom message with
non-contiguous memory blocks (in other words, holes in between) into a contiguous
streaming buffer for transmission on the network; on the receiver side, MPI deseri-
alises the contiguous message back into the non-contiguous messages for the user
application.

Previous work on sPIN has ported the MPICH dataloop-based single-threaded
implementation of MPI Datatypes to sPIN handlers that run on a simulator-based
platform [10]. By porting these existing sPIN handlers to FPsPIN, we characterise the
throughput of sPIN workloads on FPsPIN with different levels of handler complexity on
the platform. In addition, we showcase the ability of FPsPIN to achieve almost perfect
computation/communication overlap with a compute-heavy CPU workload that runs
simultaneously.

4.5.4.2 Experiment We port the handlers in [10] to the FPsPIN platform. A major
difference between the original target platform and FPsPIN is the underlying network
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Figure 26: Structure of the two datatypes, Simple and Complex, used for evaluating
the datatypes handlers; each layer builds an intermediate nested datatype until we get
the final type. ctg: contiguous vector; vec: vector with stride in elements; hvec: vector
with stride in bytes.

layer: the handlers were designed for InfiniBand-style networks that offer a reliable
message transport with arbitrary length support, while FPsPIN runs on top of lossy
Ethernet;

Due to the single-threaded nature of the dataloop implementation of MPI Datatypes,
we are unable to implement packet-level parallelism and are thus forced to use a sender
window size of 1 packet to ensure serialised packet processing. To make use of all
the 16 hpus on FPsPIN, we implement message-level parallelism, sending multiple
messages in parallel. The handler function stores all per-message states in the shared
L2 handler memory. We evaluate the e2e bandwidth of two different datatype handlers
on FPsPIN in comparison to the reference MPICH datatypes implementation on CPU
with varying degrees of parallelism in Figure 27. The structures of the two datatype
workloads, denoted as Simple and Complex, are shown in Figure 26.

To demonstrate the computation/communication overlap capability of FPsPIN, we
run double-precision gemm from OpenBLAS [39] on the CPU to simulate a compute-
heavy workload that runs simultaneously with the datatypes deserialisation on FPsPIN.
Since the CPU fetches notifications from FPsPIN in poll mode (Section 4.3.2), it is the
best to poll as few times as possible to avoid wasting CPU cycles that could otherwise
be running the computation workload. For a meaningful evaluation of computation/com-
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Figure 27: Comparison of e2e datatypes and the GEMM (gemm) throughput in diverse
parallelism and message length setups. Ref. denotes the reference case where the
workload is not overlapped with the other; Ovlp. denotes the overlapped case. We
also plot the throughput of the MPICH reference CPU implementation as baseline for
comparison. We plot the mean value of 20 measurements in each setup; the error bars
in black show the 95% confidence interval.
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Figure 28: Two possible situations of overlap between gemm and datatypes processing.
The top case overestimates the latency of datatypes processing due to not polling at a
high-enough frequency; the bottom case imposes excessive overhead on the gemm
workload due to polling too frequently.

munication overlap, we tune the gemm size for a balanced setup between computation
and communication, i.e. to minimise both datatypes latency and polling overhead. We
show in Figure 28 the two opposites of polling frequency, both of which hurts the per-
formance of either the datatypes or gemm. By tuning the size of a single invocation of
gemm, we find the sweet spot to balance between these two situations. Following [17],
we define the overlap ratio as follows:

rOverlap =
TGEMM

TGEMM + TPoll

We plot the overlap ratio and polling overhead from two datatypes in Figure 29.
In order to have correlated timing measurements between datatypes processing and

gemm, we measure the time elapsed for both workloads on the receiver side. Since the
host application does not get a notification until the datatypes transfer is finished, we
introduce a Ready-to-send (RTS) signal from the receiver to the sender: the receiver
application sends RTS to the sender and starts the gemm workload on CPU. We take
the time between the notification from FPsPIN and the RTS as the elapsed time for the
datatypes workload.

4.5.4.3 Data interpretation We report the peak throughput of the two datatypes
under different message-level paralellism and message length setups as we have
shown in Figure 27. The highest throughput are achieved at:

∙ Simple: 1162.4 Mbps with message length of 1944 kB and 16 hpus

∙ Complex: 801.2 Mbps with message length of 1080 kB and 16 hpus

The throughput gain per extra hpu utilised remains relatively constant at around 73 Mbps
for Simple and 50 Mbps for Complex thanks to the message-level parallelism mecha-
nism. We believe that this difference comes from the fact that the Complex dataloop
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Figure 29: Overlap ratio of the two data types as presented in Figure 26. The left
plot shows the ratio with a fixed message size of 2160 KB across different parallelism
settings; the right plot shows the ratio with a fixed parallelism of 16 hpus across different
message sizes. For each configuration, we plot the median values and 95% confidence
intervals across 20 samples.

representation is more complicated and takes more handler time to process compared
to Simple, manifesting as a lower throughput.

We note in addition that despite the fact that the Simple datatype has practically
the most simple structure as we have shown in Figure 26, the e2e throughput of the
datatype is still way lower than the IPerf3 throughput of around 8 Gbps. We conjecture
that the MPI dataloop software implementation contributed significantly for a very big
overhead in packet handling, resulting in the overall low throughput.

We further observe that the gemm workload suffers from a moderate slow-down
from 20 % to 30 % across different parallelism settings when overlapped with datatypes
processing, as compared to the reference case. We believe that this slow-down
mainly comes from the memory-intensive nature of gemm, since overlapped datatypes
processing would also compete for CPU memory bandwidth through host DMA. We
conjecture that the slow-down would be less significant for a more compute-bound CPU
workload. A similar effect of main memory bandwidth competition can also be observed
through a comparison of datatypes processing throughput between the reference and
overlapped cases. We recognise that the overlapping ratio stays relatively stable across
different degree of parallelism and message sizes.

Figure 29 showed a stable overlap ratio of over 99 % for all parallelism configurations.
We also observe that for shorter messages the overlap ratio drops to as low as 94 %
due to the short message not allowing longer gemm workloads within the required
number of polls. This is further confirmed by a comparison of the overlap ratio between
the Simple and Complex datatypes, showing that shorter datatypes have lower overlap
ratio across all message sizes.

4.6 Conclusion

We confirm that it is possible to implement and run complicated packet handlers such
as the datatypes handler on FPsPIN. The throughput result leaves much to be desired
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compared to the base throughput from IPerf3, mainly due to the limitation from the MPI
dataloop implementation and the low frequency at which the HPUs are clocked on the
FPGA.

Despite the suboptimal throughput results, we demonstrated that FPsPIN allows
applications to reliably achieve almost perfect communication/computation overlap for
sufficiently long messages through overlapping datatypes procesing with a synthetic
gemm workload. This successfully shows off the offloading capabilities of FPsPIN and
achieves the RED-SEA KPI 5 in which we hoped to see 90 % overlap for sufficiently
large messages, when in fact we show 92 % or more percent of overlap for all tested
message sizes.
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5 Conclusion

This deliverable deals with two important aspects regarding communication in HPC
systems. First, it introduces improvements to the two MPI implementations MPC
and ParaStation MPI. Second, it presents with sPIN a micro-architecture for network
accelerators that is optimised for offloading network processing tasks to the NIC.

The developments of the multirail within MPC achieved during this project improved
the potential bandwidth, especially for large messages, by a factor proportional to
the number of available NICs showing almost linear scaling. This feature has been
implemented through a full rewrite of previous communication layer inside MPC in order
to improve its design and its stability. Other developments have concerned the support
for thread-based communication within the MPC framework and we showed at least
that new developments did not add overhead. Tests have been performed on the Inti
supercomputer to confirm the performance improvements that we expected.

The pscom4portals plugin of pscom enables efficient MPI communication over BXI.
Its adaptation to the new RMA MPI of pscom further improves the support for this
high-performance interconnect by providing the software layers running on top with a
more direct access to the hardware’s RMA capabilities. Using this interface in the upper
layers of ParaStation MPI for the implementation of MPI one-sided communication
results in significant performance improvements compared with the two-sided-based
implementation of the corresponding interface. This way, MPI application codes that
are in particular suitable for this communication scheme do not only benefit from its
semantics but also from an improved communication performance. Additionally, this
deliverable presents a preliminary analysis of pscom’s network bridging support in MSA
systems including BXI. The test setup on the DEEP system shows that bridging of
MPI traffic across IB and BXI is possible at a throughput close to limits imposed by the
hardware.

With FPsPIN, ETH Zurich presents the first full-system prototype implementation of
the sPIN micro-architecture in hardware. This facilitates the development of the sPIN
ecosystem, including the platform itself and applications designed for it. One of the
central benefits of the sPIN architectures could be demonstrated with this prototype: it is
possible to implement and run packet handlers undertaking tasks usually conducted by
the host CPU. Therefore, the MPICH dataloop datatype engine has been ported to sPIN
by implementing the corresponding handlers. This way, real overlap of communication
and computation becomes possible as the datatype (de-)serialisation can now be
executed concurrently to the application’s main computation phase. The presented
implementation fully achieves KPI 5, which promised a 90% overlap ratio for large-
enough messages. In fact an overlap of 92% or more has been demonstrated for all
tested message sizes.
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