
Building Blocks for Network-Accelerated
Distributed File Systems

Salvatore Di Girolamo, Daniele De Sensi, Konstantin Taranov, Milos Malesevic,
Maciej Besta, Timo Schneider, Severin Kistler, Torsten Hoefler
Dept. of Computer Science, ETH Zürich, 8092 Zürich, Switzerland

{salvatore.digirolamo, daniele.desensi, konstantin.taranov, maciej.besta, timo.schneider, htor}@inf.ethz.ch
{milos.malesevic, kistlers}@student.ethz.ch

Abstract—High-performance clusters and datacenters pose
increasingly demanding requirements on storage systems. If these
systems do not operate at scale, applications are doomed to
become I/O bound and waste compute cycles. To accelerate the
data path to remote storage nodes, remote direct memory access
(RDMA) has been embraced by storage systems to let data flow
from the network to storage targets, reducing overall latency and
CPU utilization. Yet, this approach still involves CPUs on the data
path to enforce storage policies such as authentication, replica-
tion, and erasure coding. We show how storage policies can be
offloaded to fully programmable SmartNICs, without involving
host CPUs. By using PsPIN, an open-hardware SmartNIC, we
show latency improvements for writes (up to 2x), data replication
(up to 2x), and erasure coding (up to 2x), when compared to
respective CPU- and RDMA-based alternatives.

Index Terms—File systems, next generation networking

I. INTRODUCTION

Distributed File Systems (DFSs) play a fundamental role
in tackling the growing I/O bottleneck. By decoupling control
and data planes, these architectures can be easily managed and
scaled out. While there exist a plethora of DFS architectures,
it is possible to identify building blocks that are fundamental
and typically implemented by all of them. For example, clients
must be authenticated and their requests must be validated.
If this does not happen, a client can write to any storage
location, violating tenant isolation and potentially bringing the
file system to an inconsistent state. Additionally, data must be
stored resiliently by either replicating it on different storage
nodes or storing it together with parity blocks (i.e., erasure-
coded). Without resiliency, the failure of a single storage node
can compromise the entire file system or large parts of it.

These building blocks, which we call DFS policies, are de-
fined by the DFS control plane and enforced in the data plane.
For example, file or object metadata store access permissions
and whether and how the file or object must be replicated or
erasure-coded. Whenever clients access the data, these policies
must be enforced: i.e., the client request must be validated and
the data must be eventually replicated or erasure-coded.

Until recently, the performance of data plane storage opera-
tions has been greatly limited by storage media performance.
Hence, factors like network overheads, data copies, and CPU
utilization were of negligible importance. This led to the
introduction of complex software layers into the storage nodes
to implement strategies for easing storage media bottlenecks
(e.g., batching, striping), and enforce DFS policies.

However, while this assumption does not hold at all for in-
memory file systems, it must also be revised for persistent
storage. With the emergence of dense, byte-addressable non-
volatile main memories (NVMMs) [1] and NVMe JBOFs (Just
a Bunch of Flash) [2], storage media can ingest data at network
speed or faster. Hence, network and software overheads start
playing an important role and must be optimized to not become
bottlenecks. In this direction, remote direct memory access
(RDMA) [3] has been the focus of many DFS optimiza-
tions [4]–[8]. RDMA provides low latency and high bandwidth
one-sided communications, enabling clients to access memory
of remote storage nodes without involving their CPUs.

Unfortunately, RDMA provides negligible compute capabil-
ities, which are insufficient to express custom DFS policies.
Consequently, DFSs usually still rely on storage node CPUs
to enforce custom policies by using remote procedure calls
(RPC) for triggering policy enforcement and RDMA to move
data. However, this approach loses the one-sided characteristic
of RDMA, which is key for getting low latency and high
throughput. To work around this issue and fully embrace
RDMA, some DFSs [9]–[11] delegate policy enforcement to
clients. However, this can lead to worse performance (e.g.,
for replication, a client must write to each replica) or require
higher trust (e.g., without requiring request validation).

We show how DFS policy enforcement can be offloaded to
SmartNICs (smart network interface cards). When offloaded,
these policies are enforced directly on the SmartNIC, without
involving the storage node CPU. Additionally, we show how
packet-level processing can accelerate the execution of these
policies, even when compared to the case where they are
enforced by the CPU of the storage nodes. This work aims at
filling the gap between full-RDMA DFSs, which provide best
performance for raw writes but do not support custom DFS
policies, and CPU-based DFSs, that allow expressing any DFS
policy at the cost of additional overheads (e.g., PCIe latency).
All in all, we introduce the following contributions:
• Show how SmartNICs enable high-performance implemen-

tation of DFS-specific protocols;
• Demonstrate how fully programmable SmartNICs with

packet-level processing capabilities can accelerate multi-
node communications required for, e.g., data replication;

• Apply packet-processing techniques to offload complex
tasks such as erasure coding. Not only this approach results
better than proprietary, firmware-based solutions but also

SC22, November 13-18, 2022, Dallas, Texas, USA
978-1-6654-5444-5/22/$31.00 ©2022 IEEE

Storage #1 Storage #2 Storage #3

MetadataDFS
endpoint

1
2

3

User

(a)

In
te

rc
on

ne
ct

CPU

DRAM

NVMM

NVMe
JBOFStorage

NIC

RPC

MetadataDFS
endpointUser

DFS Policies

(b)

In
te

rc
on

ne
ct

CPU

DRAM

NVMM

NVMe
JBOFStorage

RDMA NIC

RDMA

MetadataDFS
endpointUser

DFS Policies

(c)

In
te

rc
on

ne
ct

CPU

DRAM

NVMM

NVMe
JBOFStorage

SmartNIC

RDMA

DFS Policies

MetadataDFS
endpointUser

(d)
Fig. 1. (a) DFS operational model assumed in this paper; (b) DFS policies implemented in storage nodes CPU; (c) with RDMA; and (d) with SmartNICs.

improves the time-to-market of new strategies as they are
not constrained anymore by vendor-dependent deployments.

• We study the benefits of network acceleration for DFSs
on an open-hardware, fully programmable SmartNIC. The
entire toolchain, comprised of cycle-accurate simulations, is
available online, easing reproducibility and enabling quick
investigation of new hardware features for future research.

We envision that the approach taken in this work to offload
DFS building blocks can be followed for designing next-
generation DFSs, allowing them to benefit from RDMA per-
formance while effectively enforcing storage policies.

II. DISTRIBUTED FILE SYSTEMS AND SMARTNICS

By decoupling control and data planes, DFSs can distribute
I/O accesses and abstract technology- and vendor-specific stor-
age backends, providing an independent and standard interface
to the clients while easing the management of conventional
storage systems. Commonly, DFSs are composed of three
main services: management, metadata, and storage. Activities
such as authentication and monitoring are carried out by the
management service. Control plane tasks are performed by the
metadata service that indexes files/objects and references the
actual data stored by the storage service.

Figure 1(a) shows a typical DFS workflow. A user is inter-
faced with a DFS endpoint that can be either a library, a kernel
module, or a separate network node. In the following, we
do not make a distinction between users and DFS endpoints,
referring to both of them as client. The client first authenticates
through the DFS endpoint with the management service (not
shown in the figure). Then, to access file or object data, it
queries the metadata service 1 to retrieve the file layout 2 .
A file layout describes the regions (e.g., objects or blocks)
composing a file and address information (e.g., on which
storage node a region is stored and at which storage address).
This information allows the client to communicate directly
with the storage node for accessing the data 3 .

A. DFS policies

A DFS policy is a set of actions defined by a distributed
file system to be enforced when clients access data. These
policies are defined in the control plane (i.e., management and
metadata service) and enforced in the data plane (i.e., storage
nodes). Normally, overheads introduced by the enforcement
of these policies are factored in the data access (e.g., read
or write) latencies. We investigate how DFS policies can be
enforced directly by the network interfaces of the storage

nodes. By enforcing them on the NIC, on per-packet basis,
we can improve the overall latency of write operations besides
lowering CPU usage on the storage nodes. While each DFS
can define its own custom policies, we identify three classes of
policies of general interest for DFSs: protocol, data movement,
and data processing policies. In this paper, we select one
representative policy for each class:
Protocol: client request authentication. Data access requests
issues by clients to storage nodes must be validated. This
validation can avoid the case of a malfunctioning or malicious
application acting as a client and bringing the DFS to an
inconsistent state. With this policy, a client must first obtain a
ticket or capability from the metadata node and then use it to
make requests to the storage nodes. Storage nodes can verify
the legitimacy of the request through the capability.
Data movement: replication. Data replication improves re-
liability and fault tolerance capability of DFSs. The idea is
to replicate the data on k storage nodes, where k can be a
global, per-pool, or per-file parameter. The metadata nodes
store the replication information, and the replication strategy
is triggered whenever new data is stored.
Data processing: erasure coding. Data replication is charac-
terized by high storage costs, which are linear in the replication
factor. With erasure coding (EC), data is split into k chunks
and stored together with m parity chunks. In case of failure,
missing chunks can be recovered by using the remaining ones.

Figures 1(b-d) sketch different DFS architectures for the
storage nodes. In a CPU-centric storage node architecture (Fig-
ure 1b), the client issues remote procedure calls (RPC) to the
storage node, which trigger software components on the CPU
of the storage node enforcing DFS policies. Figure 1c shows an
RDMA-centric approach, where the CPU of the storage node
is bypassed. With this approach, the clients must enforce DFS
policies, as RDMA does not expose a programmable interface.
Finally, Figure 1d, shows a SmartNIC-centric approach, which
we explore in this paper, where DFS policies are implemented
directly in the network interface of the storage nodes.

B. Network acceleration

As our goal is to offload the enforcement of these policies
to the network, we now identify a set of principles that an in-
network compute solution should provide in order to enable
effective DFS policy offloading.
One-sided requests. Storage nodes should handle data ac-
cesses and relative policy enforcement without involving the
host CPU of the storage nodes and without requiring long-

lived per-client data structures. For example, if storage nodes
actively participate in the data replication process (e.g., as they
are arranged in a tree or ring virtual topology), the forwarding
to next replicas should not involve the host CPU nor require
to maintain long-term information about the virtual topology.
While RDMA-based solutions allow one-sided data access,
they are not designed to execute custom compute tasks (i.e.,
DFS policies).
Flexibility. DFS policies can be complex and data-dependent.
For example, erasure coding policies need to access the entire
packet payload to compute parities. For this, RDMA-based
solutions would need to rely on vendor-specific accelerators
for erasure coding [12]. Solutions based on P4 [13] do not
provide iteration constructs (making deep-packet inspection
challenging), pointers, references, and inter-packet state. Solu-
tions based on eBPF/XDP [14] are limited by the programming
model (e.g., bounded loops, limited number of instructions,
limited packet forwarding capabilities) [15]. While it is pos-
sible to extend existing NIC designs [16], [17] to implement
DFS policies in hardware, this would increase the complexity
of expressing and deploying such policies.
User-level. DFSs should be able to install custom policies
without needing privileged access to the system (i.e., admin
rights). This capability opens up network acceleration also
to user-level I/O libraries such as DAOS [18]. Expressing
policies in eBPF/XDP would mean that the DFS-policy sees
all packets coming through the network interface and reacts to
specific ones (e.g., write requests). However, this rules out the
possibility of having user-space applications (without elevated
privileges) installing new policies because it would break iso-
lation principles (i.e., a policy installed by an application could
access packets targeting other applications). Similar issues
arise for DPDK [19] and SmartNICs providing programming
models based on eBPF/XDP [14] and DPDK [20].

1) Streaming processing in the network: Network commu-
nications, or messages, consist of streams of packets traveling
between pairs of endpoints. With message-based processing,
the receiving endpoint receives the full stream of packets
before processing it. This is what happens when processing
data received with, e.g., MPI point-to-point communications.
With this approach, the NIC has to copy packet payloads to
host memory before triggering CPU processing. A different
approach is to leverage the streaming nature of network
communications and process packets as the endpoints receive
them. This approach exposes packet-level parallelism, poten-
tially accelerating the processing of incoming data as multiple
packets are processed in parallel. When data processing is
offloaded to the NIC, streaming processing also allows to have
lighter memory requirements: i.e., there is no need to buffer
the full message on the NIC before being able to process it,
but only the packets currently being processed.

sPIN [21] is an in-network compute solution operating on
packet streams , which enables the offloading of DFS policies
according to the above-described principles. In particular, sPIN
enables applications to define lightweight kernels executed on
incoming network packets directly on the NIC. These kernels,

Sc
he
du

le
r

HPUs

in
te
rc
on

ne
ct

DMA
engine

Fast
shared
memory

2

4
to other storage nodes

replicated (Sec. V) / parity packets (Sec. VI)

...
validate request (Sec IV)

and run DFS policies
1 In

te
rc
on

ne
ct

CPU

DRAM

NVMM

NVMe
JBOF

3

client request
packets

Fig. 2. Network-offloaded DFS policies overview.

called handlers, are defined on classes of messages. When
packets of a message matching a given class arrive, sPIN
schedules the corresponding handlers to be executed on the
on-NIC Handler Processing Units (HPUs). To process packets,
an application defines three handlers: the header handler (HH),
executed only on the first packet of a message; the completion
handler (CH), run on the last packet of a message (i.e.,
completion packet); and the payload handler (PH), executed
on all packets of a message (included header and completion).
sPIN requires that the network delivers the header packet first
and the completion packet last, without introducing additional
constraints on payload packets.

sPIN provides an RDMA+X programming model, where
the X is a per-packet task defined by the application running
on the host and executed on the NIC, fully implementing the
one-sided requests principle. sPIN handlers can be expressed
in C/C++ and, differently from P4 and eBPF/XDP, are not
subject to restrictions on actions that can be performed on
the incoming packets, providing flexibility. Finally, differently
from solutions based on DPDK, P4, and eBPF/XDP, sPIN
enables user-level applications to offload compute tasks to
the NIC, providing isolation by design. This is achieved by
matching packets to application-defined execution contexts
(i.e., providing information on, e.g., which packet handlers
to run), similarly to the way packets are matched to queue
pairs in RDMA or to match list entries in Portals 4 [22].

In this work, we use an open-source implementation of
sPIN, PsPIN [23]. PsPIN is a PULP-based [24] packet pro-
cessor composed of 32 RISC-V cores running at 1 GHz (i.e.,
the HPUs), divided into four compute clusters. Each compute
cluster is equipped with a 1 MiB single-cycle access memory
(L1) and an off-cluster 4 MiB memory (L2). In addition, the
accelerator includes a hardware packet scheduler that provides
low-latency scheduling (1-2 cycles) and DMA engines to move
data between NIC memories and interface with host memory.

III. NIC-OFFLOADED DFS POLICIES

Figure 2 shows an overview of our approach to network-
offloaded DFS policies. Clients issue data access requests to
storage nodes 1 , triggering DFS policies that are executed
on the HPUs of the sPIN-enabled NIC 2 . The DFS handlers
authenticate requests coming from the client (see Section IV),
write data to host 3 , and enforce other DFS policies 4 such
as replication (Section V) and erasure coding (Section VI).
By running DFS policies as sPIN handlers, we can perform
actions (e.g., forward packets to the next replica node) before

data reaches host memory via the system interconnect, saving
latency for small writes (e.g., a PCIe round-trip can take up
to 400 ns [25]), and leveraging packet-level parallelism for
larger ones (i.e., composed of multiple network packets).

We do not focus on a specific storage medium. Instead,
we focus on showing the benefits of offloading DFS policy
enforcement to the NIC and assume that the storage medium
can digest data at network bandwidth or higher. For example,
with in-memory or non-volatile-main-memory (NVMM) based
DFSs, handlers would write directly to main memory, as any
other RDMA DFS [9], [11]. For DFSs targeting NVMe just-a-
bunch-of-flash (JBOF), handlers would directly issue NVMe
writes via the system interconnect (e.g., PCIe).

A. Client request format

Figure 3 shows the layout of write and read requests. A
write request consists of: an RDMA header (e.g., InfiniBand
or RoCEv2); a generic DFS header carrying information to
identify the request (e.g., operation type) and to authenticate
it; a write request header (WRH) that carries write-specific
information, such as the replication strategy and the number
and coordinates of the replica nodes and respective address
where data must be replicated. The headers are followed by
the packet payload (i.e., the data to write). If the write spans
multiple network packets, then only the first packet carries
DFS-specific headers, while others consist of the RDMA
header and the continuation of the data to write. A read request
carries the RDMA header, the DFS header, and a read request
header (RRH) with read-specific information.

We assume that request headers (DFS and WRH/RRH)
always fit in a single network packet. This assumption is
realistic for, e.g., RoCE networks, where packet sizes are
limited by Ethernet maximum transmission unit (MTU), which
typically ranges between 1.5 KiB and 9 KiB (jumbo frames).

RDMA
header DATA

RDMA
header

DFS
header RRH

Write
request

Read
request

First packet (header packet)

Other packets (payload packets)

First packet (header packet)

RDMA
header

DFS
header WRH DATA

Fig. 3. Packet format for write and read requests.

B. sPIN handlers

Listing 1 shows the pseudocode of generic sPIN handlers
for offloading DFS components. Each handler takes two argu-
ments: a task descriptor and the pointer to a network packet.
The task descriptor contains information about the correspond-
ing execution context, such as NIC memory allocated for and
shared by the handlers running on packets matched by this
specific execution context.

There are two types of DFS-specific tasks that can be exe-
cuted on each request: per-request tasks and per-packet tasks.
Per-request tasks can be expressed in DFS_request_init
and DFS_request_fini, which are called once per mes-
sage, i.e., in the header and completion handlers, respectively.

Per-request tasks can be used for, e.g., validating the request
before processing other packets of the same request (i.e.,
sPIN guarantees that the payload handlers of a message
are executed after the header handler of that message com-
pletes). As the completion handler is executed only once
all packets of a message have been processed, the DFS can
use DFS_request_fini for finalizing the handling of the
request: e.g., send the write acknowledgment back to the
client. Additionally, a payload handler is executed for each
packet (including header and completion). Here, the DFS can
run per-packet actions such as copying the payload to the
storage media and sending the packet to the next replica node.

These handlers are triggered for all incoming client requests:
i.e., the first packet of any request triggers a header handler,
the last triggers a completion handler, and all packets trigger
a payload handler. They are persistent and do not need to
be installed on a per-request basis nor require an established
connection between clients and storage nodes.

1 void header_handler(spin_task_t* task, pkt_t* pkt) {
2 dfs_state_t* state = (dfs_state_t*) task->mem;
3

4 bool accept_next_pkts = DFS_request_init(state, pkt);
5 // DFS_request_init sends NACK if request auth fails
6

7 int req_idx = task->flow_id;
8 state->req_table[req_idx].greq_id = pkt->dfs.greq_id;
9 state->req_table[req_idx].accept = accept_next_pkts;

10 }
11

12 void payload_handler(spin_task_t* task, pkt_t* pkt) {
13 dfs_state_t* state = (dfs_state_t*) task->mem;
14 int req_idx = task->flow_id;
15

16 if (state->req_table[req_idx].accept)
17 DFS_request_process_pkt(state, pkt);
18 //else packet is dropped
19 }
20

21 void tail_handler(spin_task_t* task, pkt_t* pkt) {
22 dfs_state_t* state = (dfs_state_t*) task->mem;
23 int req_idx = task->flow_id;
24

25 if (state->req_table[req_idx].accept)
26 DFS_request_fini(state, pkt);
27 //else packet is dropped
28 }

Listing 1. Generic sPIN handlers for offloading DFS tasks.

1) Data persistence: A write operation completes when the
data reaches the storage target. If client requests are handled on
CPUs of the storage nodes, the DFS can wait for the data to be
written to the memory target before acknowledging the client.
In RDMA-based DFSs, this task is slightly more complex.
There, when a client gets an RDMA write completion event,
the data could be on the storage node persistent memory or still
be buffered somewhere between the NIC and the storage target
(e.g., PCIe buffers). To overcome this limitation, the client can
issue an RDMA read immediately after a write to flush DMA
buffers, triggering a read-after-write dependency [25].

While RDMA extensions are being proposed to introduce
an RDMA flush operation [26] that could be merged together
with a write to save the additional RDMA read latency, this
is a good example of the advantages of using SmartNICs.
With sPIN, packet handlers can explicitly issue writes to the
storage medium, making sure that the data is flushed before

acknowledging the client, as it would happen on the CPU.
Additionally, a sPIN handler can overlap other activities (e.g.,
running other DFSs policies, such as replication) while waiting
for the data to be flushed to the storage target.

2) Scalability: Each write request requires to keep a state
in the NIC for the whole operation duration (i.e., req_table
entries in Listing 1). Each entry is a write descriptor that
takes 77 bytes and stores the current status of the request plus
information that is carried only by the header packet and that is
needed by payload handlers. For example, for data replication
(see Section V), we use a source-based approach where the
WRH carries replica addresses. As we need to forward all
packets of the write request, we store these addresses in the
per-request state to make forwarding possible.

In PsPIN, each one of the four compute clusters is equipped
with a 1 MiB single-cycle access memory (L1). Additionally,
there is an off-cluster NIC memory of 4 MiB (L2). We store
client request descriptor into L1 and use L2 as a swap-out
area. In total, we have 6 MiB of available memory to store
client request entries, while the remaining 2 MiB are used to
store DFS-wide state. This allows us to serve up to ∼82 K
concurrent writes for each storage node. If a client request
cannot be served because of lack of space, the request is
denied, and the client will retry later.

1

100

10000

0 250 500 750 1000
Number of writes

1 MiB
64 KiB

4 KiB

PsPIN descriptor memory (6 MiB)

S
iz

e
 (

K
iB

)

Fig. 4. Worst-case required NIC memory versus number of writes and write
sizes. The horizontal line indicates the amount of NIC memory required.

The number of writes served by a storage node at any given
time depends on the write size, sPIN handler running times,
network bandwidth, and network state (e.g., congestion). We
apply Little’s law to make a worst-case analysis of the average
number of writes being served at any given time by a storage
node, assuming a constant flow of fixed-size writes arrive at
full bandwidth. Figure 4 shows the required NIC memory to
handle a specific number of writes (x-axis) and for different
write sizes. In this analysis, we assume that sPIN handlers are
not a bottleneck. Detailed data about sPIN handler running
times are reported in the following sections.

C. Full-system design considerations

To offload policies to the NIC, the DFS software running on
the storage nodes CPU instantiates a PsPIN execution context
made of DFS handlers and a NIC memory region storing the
DFS state. The execution context is installed into the storage
node NIC and matches all incoming RDMA packets. The DFS
software running on the CPU can communicate with sPIN
handlers by writing to NIC memory (e.g., to update encryption
keys, see Section IV). On the other side, handlers can com-
municate with the DFS software through application-specific
event queues (e.g., error conditions, logging information, and
other policy-specific events).

The DFS endpoint is similar to RDMA-based DFS. A client
must be able to retrieve metadata to build read/write requests
(e.g., addressing information for primary and secondary stor-
age nodes). On the storage nodes, requests can be handled
either by PsPIN, as we show in this work, or by the DFS
software running on the storage node CPU (e.g., by appending
requests to RPC command queues via RDMA [27], [28]).
For example, the execution context can be configured to steer
requests to host memory, bypassing PsPIN, if the SmartNIC
is not keeping up with line rate (e.g., overwhelmed by writes
requiring erasure coding, see Section VI).

D. Experimental methodology

Until now, we described sPIN, the programming model that
best fits the principles of Section II, and discussed the skeleton
of the sPIN handlers used to offload the DFS policies. The
next sections show how three different DFS policies can be
offloaded to the NIC and the respective performance benefits.

The evaluation shown in the following sections is performed
through cycle-accurate and functional simulations. We use the
PsPIN toolchain to produce cycle-accurate timings of sPIN
handlers and the Structural Simulation Toolkit (SST) [29] to
simulate multi-node scenarios (e.g., clients and storage nodes).
PsPIN handlers are compiled with a PULP-custom version
of GCC 7.1.1 (riscv32, -O3 -flto). We configure SST to
simulate a 400 Gbit/s network, with a maximum transmission
unit (MTU) of 2048 B and 20 ns link latency.

IV. CLIENT REQUEST AUTHENTICATION

To access data, clients first get metadata information and
then directly contact the storage nodes to access data. In
this scenario, storage nodes can either trust or authenticate
client requests. However, it is not always possible to fully
trust clients in shared distributed systems, as a malfunctioning
or malicious application/node could bring the DFS to an
inconsistent state.

The way client requests are authenticated is DFS-specific.
While RDMA provides protection via rkeys (i.e., a node
can access a remote region only if it has the respective
rkey), this offers limited authentication capabilities for client
requests. For example, having a single rkey for all files would
not prevent clients from accessing data they do not own,
while having a rkey for each file would require registering
#files ×#rights memory regions, which can lead to scal-
ability issues [30]. On the other side, validating requests on
the CPU of the storage nodes increases overhead, requiring
either to buffer the full write before committing it to the
storage target (losing the zero-copy benefit of RDMA) or to
introduce an additional network round-trip before the RDMA-
write. Figure 5 (left) sketches the scenario where CPU-based
request authentication is performed. In this case, after the
client authenticated itself with the management node and
queried the metadata node, it sends a request to the storage
node. The request is validated on the CPU of the storage node
and, after that, the actual RDMA data transfer can begin.

Client Management Storage

ticket
auth

Metadata

metadata
metadata query

write request

grant

NIC CPU

ack

RDMA
write

ticket
auth

metadata
metadata query

ack

RDMA
write

Client Management Storage Metadata
NIC CPU

request validationcontrol data (RDMA)

RPC+RDMA sPIN

Fig. 5. Authentication strategies. Left: authentication performed on the host
CPU (RPC+RDMA). Right: on the NIC with sPIN. The storage node is
represented with both NIC and CPU to show where activities are executed.

The sPIN case is shown in Figure 5 (right). The val-
idation is offloaded to the NIC and implemented in the
DFS_request_init function of Listing 1. This allows
the client to directly issue the RDMA write as the request
validation will be performed on-the-fly by sPIN handlers,
saving the extra RTT required for authenticating the client.

The way requests are validated depends on the threat model:
if we trust both the clients and network (e.g., sRDMA [31]),
then the ticket can be a plain-text secret given to the client by
the management node and checked by the handlers. Nobody
can read the ticket from the client or intercept it in the network.
DFSs like Orion [9], where storage nodes are accessed by the
clients via RDMA, assume this threat model.

If clients are not trusted but the network is, then we
need authentication capabilities: the client gets a ticket from
the metadata node that contains a capability descriptor. This
descriptor determines the operations that the client is allowed
to perform and the data it can access. The handlers verify
the capability, which is signed with a key shared among DFS
services, and check that the requested operation is allowed by
the capability [32]. In this work, we assume this threat model.
If the network is not trusted, then handlers need to authenticate
each network packet in order to exclude tampering.

We analyze the impact of processing packets through sPIN
on the overall write latency. The write latency is the time
spanning from issuing the write request to receiving the
respective write response. In this case, we consider writes
where only client request authentication is performed, without
additional DFS policies (e.g., replication or erasure coding).
We consider the following write protocols:
• RPC+RDMA: The client first sends the write request to the

storage node via RPC. The RPC handler, executed on the
CPU of the storage node, runs DFS policies (e.g., validating
the client request) and issues an RDMA read towards the
client for getting the data to store.

• RPC: The client sends the write request and the data to store
to the storage node via RPC. The storage node buffers the
data to write, runs DFS policies, and eventually stores the
data in the storage target.

• sPIN: The client sends the write request and data to store
to the storage node in a single RDMA write. Packets are
intercepted by sPIN at the NIC of the storage node, where
client requests are authenticated by sPIN handlers.

● ● ● ●

●

●

● ● ●
●

●

0

10

20

30

40

1 4 16 64 256 1024
Write size (KiB)

T
im

e
 (

u
s
)

● ● ●

●

● ●
●

●

2

4

6

2 8 32 128

RPC+RDMA RPC
sPIN
Raw

26 GB/s

45 GB/s

40 GB/s

Fig. 6. Write latency with different protocols and write sizes. Raw writes are
reported as a (speed-of-light) reference as they do not enforce any policy.

• Raw writes: this is our speed-of-light scenario. No DFS
policies are enforced on incoming writes. The client issues
a single RDMA write to the storage node.

A. Request authentication overhead

Figure 6 shows write latencies for different write sizes. The
sPIN handlers validate client requests by checking the capabil-
ity carried in the write request header (see Section III-A). For
RPC and RCP+RDMA, the same validation is performed on
the CPU. For large writes, RPC is penalized by the additional
memory copy needed to buffer the write while the request
is validated. We notice how sPIN introduces small overheads
over raw writes, which do not perform validation of incoming
write requests. For small writes, sPIN pays the latency of
having packets traverse the on-NIC accelerator and validate
requests, hence it shows higher overheads (up to 27%) than the
raw writes. Figure 7 breaks down the overheads of processing
packets in PsPIN: a packet is first copied into the packet buffer
(32 cycles for a 2 KiB packet), then scheduled to one of the
four processing clusters (2 cycles). At this point, the packet
is copied into the cluster-local, single-cycle access memory
(43 cycles) and finally scheduled to an idle HPU (1 ns). The
DFS handler that validates client requests takes 200 cycles.
For large writes, the per-request validation performed only on
the first packet of the write becomes negligible, making sPIN-
processed writes approach the RDMA (speed-of-light) latency.

...Copy to packet buffer
(32 ns)

Copy to fast memory
(43 ns)

Handler execution
(200 ns)

Inter-cluster scheduling (2 ns) Intra-cluster scheduling (1 ns)

time

Fig. 7. Packet processing overheads in PsPIN (for 2 KiB packets).

V. DATA REPLICATION

This DFS policy replicates data on k storage nodes, where
k can be either a global, per-pool, or per-file parameter. In
this way, data can survive the failure of k − 1 storage nodes.
To enforce replication, the data written by a client should be
propagated to k storage nodes. In the following, we use k to
indicate the replication factor, that is the number of nodes on
which data is replicated.

Figure 8 shows different strategies for data replication. If
the CPU of the storage nodes is involved, then data can be
broadcasted among the k storage nodes following different
strategies (i.e., broadcast schedules). The optimal broadcast
schedule depends on k, the data size, and the interconnection
network characteristics [33], [34].

Primary
NIC CPU

Secondary
NIC CPU

Tertiary
NIC CPU

Client Primary
NIC CPU

Secondary
NIC CPU

Tertiary
NICCPU

Client

RDMA-Flat sPIN-Ring
Primary
NIC CPU

Secondary
NIC CPU

Tertiary
NICCPU

Client

CPU-Ring

Primary
NIC CPU

Secondary
NIC CPU

Tertiary
NIC CPU

Client

RDMA-HyperLoop

data control replication policy execution

Fig. 8. Data replication policy implemented with different strategies. CPU-Ring involves the CPU of the storage nodes to implement a ring broadcast. With
RDMA-Flat, clients write directly to the storage node memory but need to make k different RDMA writes, one for each replica. In the RDMA-Hyperloop
case, the RDMA ring needs to be configured with a smaller, pre-defined broadcast for metadata (i.e., for updating RDMA work queue entries to serve the
actual data broadcast). With sPIN, the policy is offloaded to the NIC of the storage nodes, that propagate the data on a per-packet basis.

In RDMA-based DFSs, data replication can be performed by
either delegating the replication process to the client (RDMA-
Flat, i.e., the client performs k different RDMA writes) or
with pre-posted RDMA operations that need to be configured
by the client out-of-band [35] (RDMA-HyperLoop).

With sPIN, storage nodes can exploit the exposed NIC
computing capabilities to distribute replicated data using dif-
ferent broadcasting strategies without involving the host CPU.
Specifically, we consider two different replication strategies:
ring, where each replica sends to another replica only, and
binary tree, where each replica sends to two children. We show
in Figure 8 an example where the sPIN handlers on the storage
node propagate the data in a pipeline with the replica nodes
virtually arranged on a ring (sPIN-Ring). Since each packet
must be forwarded, the broadcast algorithm is implemented in
the DFS_request_process_pkt function of Listing 1.

A. Broadcast schedules in sPIN

Any broadcast schedule offloaded with sPIN is naturally
pipelined on network packets. In particular, for participating
in the broadcast, each packet handler needs to (1) identify their
position in the broadcast tree (a ring can be seen as a unary
tree) and (2) send a copy of the data to its children if any.

We require that the write request header (see Figure 3)
carries the following information:
• Replication strategy: ring or pipelined binary tree (pbt);
• Virtual rank: an ID that identifies the node in the tree;
• Replica coordinates: a list of tuples representing the replica

nodes. Each tuple includes the network address of the
replica and the respective storage address.

This information is contained in the first packet of the write
request and needs to be also propagated to the handlers
processing the subsequent packets. For this reason, we keep
an array of replica coordinates (coord array) in the DFS state
stored in NIC memory: this array has a length equal to the
arity of the broadcast tree (i.e., 1 if ring, 2 if pbt) and is
filled in by the header handler. The header handler uses the
virtual rank, the replication strategy, and the list of replica
coordinates to identify the children where to send data. The

payload handlers check the DFS state and send the data to all
replica coordinates into coord array.

By having the request carrying information on how to
progress the communication, we create a client-driven broad-
cast that does not require the involved storage nodes to keep
CPU-initialized stateful data structures to progress it (e.g., to
know where to forward the data). We still need a stateful data
structure (i.e., the coord array), but that can be initialized
when the first packet of the request arrives.

B. Data replication performance

To analyze how per-packet processing impacts data replica-
tion performance, we measure the write latency for different
data sizes and replication factors. We consider different repli-
cation strategies, ranging from fully offloaded with sPIN to
CPU based:
• CPU-Ring. Replica nodes are virtually arranged in a ring.

The CPU of the storage nodes is notified of incoming writes
and forwards data to the next node in the (pipelined) ring.

• CPU-PBT. Similar to CPU-Ring but replica nodes are
arranged in a binary tree.

• RDMA-Flat. A client issues as many writes as the number
of replica nodes.

• RDMA-HyperLoop. A client first updates the work-queue-
elements (WQEs) on the RDMA NICs of the storage nodes
and then starts an RDMA ring broadcast [35]. The WQEs
need to be updated in order to define where to write the
data on the storage node.

• sPIN-Ring. Replicas are arranged in a ring. Data is for-
warded by sPIN handlers running on the NIC of the storage
nodes. Data is naturally pipelined on network packets.

• sPIN-PBT. Similar to sPIN-Ring but replica nodes are
arranged in a binary tree.

RDMA-Flat and RDMA-HyperLoop do not enforce request
validation and fully trust clients. We report data from pipelined
executions with optimal chunk size for all non-sPIN strategies
implementing a ring and binary-tree broadcast.

1) Write latency: Figure 9 (left) and Figure 9 (center) show
latencies of writes with replication factors of k=2 and k=4,
respectively. Each plot shows the write latency as function of

● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ●
●

●

●

●

●● ●● ●● ●● ●● ●● ●● ●● ●●
●●

●●

0

20

40

60

80

1 4 16 64 256 1024

Write size (KiB)

L
a

te
n

c
y
 (

u
s
)

● ● ● ●
●

●● ● ● ●
●

●

● ● ● ●
●

●● ● ● ●
●

●

●● ●● ●● ●● ●● ●●4

6

8

2 8 32

RDMA-HyperLoop
CPU-Ring/PBT
RDMA-Flat
sPIN-Ring/PBT

13 GB/s

22 GB/s

44 GB/s

12 GB/s

● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ●

●

● ● ●
●

●

● ● ● ● ●
●

● ● ● ●
●

0

50

100

150

1 4 16 64 256 1024

Write size (KiB)

L
a
te

n
cy

 (
u
s)

● ● ● ● ●
●● ● ● ● ●
●● ● ● ● ●
●

● ● ● ● ●
●

● ● ● ●● ●● ● ● ●● ●5
10
15
20

2 8 32

RDMA-HyperLoop
CPU-Ring
CPU-PBT
RDMA-Flat
sPIN-Ring
sPIN-PBT

6.6 GB/s

7.8 GB/s

11 GB/s

18 GB/s
19 GB/s

39 GB/s

0

100

200

300

400

1 8 64 512

Write size (KiB)

W
ri

te
 g

o
o
d
p
u
t
(G

b
it/

s)

k
=

4
,

R
in

g
k
=

1

k
=

4
,

P
B

T

Fig. 9. Left: Write latency with replication factor (k) set to 2 for different write sizes and replication strategies. Center: Write latency with replication factor
(k) set to 4. Right: Goodput sustained by a single storage node for different write sizes and offloaded replication strategies.

the write size and for different replication strategies. With k=2,
there are no differences between ring and pbt replication strate-
gies as the primary storage node has only one children. In both
scenarios, RDMA-Flat provides the lowest latency for small
writes (up to 16 KiB), being up to 27% faster than sPIN-Ring
for 1 KiB writes and k=2. However, RDMA-Flat would require
an additional round-trip per replica to validate write requests.
For writes bigger than 16 KiB, the data injection cost paid by
the client starts impacting RDMA-Flat performance, making
sPIN-based solutions faster. RDMA-Hyperloop is penalized
by configuration overheads (i.e., writing of WQEs at storage
nodes, see Figure 8). These overheads get better amortized for
long replication chains (k=4) and large message sizes. Overall,
sPIN-based solutions achieve up to 2x and 2.16x lower latency
(w.r.t. the best alternative) for k=2 and k=4, respectively. CPU-
based replication strategies are negatively impacted by the cost
of moving data to and from host memory.

2) Write goodput: Figure 9 (right) shows the goodput
sustained by a single network-accelerated storage node for
different write sizes and replication strategies. This is the
amount of data per second, excluding headers, that can be
ingested by a storage node.

A 1 KiB write fits in a single packet (MTU is 2 KiB) that
triggers all handlers (header, payload, and completion). Since
each packet triggers three handlers, the overall throughput that
sPIN can sustain is limited. With larger writes, the number
of packets per write increases, better amortizing header and
completion handlers costs (executed once per write). Starting
from 8 KiB writes sPIN-Ring line rate. Writes replicated with
sPIN-PBT achieve about half the bandwidth because, for each
incoming packet, two new packets (i.e., one per children) must
be sent out. However, the bandwidth cost is compensated by a
lower overall latency of the binary tree for small writes and/or
large values of k (see Figure 10 (left)), allowing to achieve

● ● ● ●●
● ●

●

●

●

●

●

●

●

●

●

●●
●●

●
●

●

●

10

20

30

2 4 6 8

Replication factor (k)

L
a
te

n
cy

 (
u
s
)

RDMA-HyperLoop

RDMA-Flat

CPU-PBT
CPU-Ring

sPIN-PBT
sPIN-Ring

●

●

●

●

●

● ● ●

●
●

●
●●

●

●

●

●● ●
●

●
● ●

●
40

80

120

160

2 4 6 8

Replication factor (k)

L
a
te

n
cy

 (
u
s
) RDMA-HyperLoop

RDMA-Flat

CPU-PBT
CPU-Ring
sPIN-PBT

sPIN-Ring

Fig. 10. Write latency for small (4 KiB, left) and large (512 KiB, right)
writes with different replication strategies and replication factors (k).

write latencies better or similar to sPIN-Ring in those cases.
3) Varying the replication factor: Figure 10 shows the write

latency as function of the replication factor for 4 KiB (left plot)
and 512 KiB (right plot) writes. For small writes, RDMA-Flat
has the lowest latency for any replication factor. For large
writes, the injection cost increases, limiting the performance of
RDMA-Flat that grows linearly with k. CPU-based pipelined
strategies become more efficient for large replication factors,
but they are still penalized by memory-copy overheads. On
the other hand, sPIN-based versions are less sensible to k
because of the smaller per-packet overheads. As expected,
pbt-based replication performs better than ring-based ones for
small writes and large values of k.

●●●●● ●● ●●●● ●●●● ●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●
●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●●
●●●●●●●●●
●
●●●●●●●●●
●●●●●●●
●●●●●●●●●●● ●●●● ●●●●

●●

●

●●●●

●

●

●●●
●●
●

●

●●●

●

●
●

●●●

●

●
●●
●

●●●

●

●

●

●●●

●●●

●●

●

●
●●

●

●

●

●

●●

●●

●●

●●
●

●

●
●
●●

●
●

●

●
●

●

●

●

●

●●●●

●

●
●

●●●●

●

●

●

●

●

●

●●●

●●

●

●●●

●

●

●
●

●

●

●●●●

●

●

●

●●●

●

●

●●

●

●

●

●●●●

●

●

●●

●

●

●

●

●●●

●

●
●●

●

●
●
●

●

●●●

●

●●

●
●●●

●

●●

●●

●

●
●

●

●

●
●

●●

●

●●

●●

●●

●●●

●●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

k=1 k=4, Ring k=4, PBT

HH PH CH HH PH CH HH PH CH
0

1000

2000

3000

Write size (KiB)

H
a

n
d

le
r

ru
n

tim
e

 (
n

s)

200 Gbit/s

400 Gbit/s

Fig. 11. Handlers running time for writes with replication. Left: no replica-
tion; Middle: 4 replicas, sPIN-Ring; Right: 4 replicas, sPIN-PBT.

4) Handlers runtime analysis: Figure 11 shows handler
running times for different handler types and replication
strategies. We plot lines indicating the cycle budget available
to each handler to sustain 400 Gbit/s and 200 Gbit/s line
rates with 2 KiB packets. We observe that the duration of
handlers for writes without replication (k = 1) and writes
with ring-based replication (sPIN-Ring) always stays below
the 400 Gbit/s budget. The higher running times of sPIN-PBT
handlers justify the lower write goodput discussed above. As
shown in Table I, the longer duration of these handlers does
not correspond to an higher complexity but to a lower number
of instructions per cycle (IPC). This is a consequence of the
fact that the egress network bandwidth is limited (400 Gbit/s)
and that each incoming packet generates two outgoing ones.

Type Duration (ns) Instructions IPC
HH PH CH HH PH CH HH PH CH

k=1 211 92 107 120 55 66 0.57 0.60 0.62
k=4, Ring 212 193 146 120 105 65 0.57 0.54 0.44
k=4, PBT 214 2106 1487 120 130 82 0.56 0.06 0.06

TABLE I
HANDLER STATISTICS FOR DIFFERENT REPLICATION STRATEGIES.

VI. ERASURE CODING

The main disadvantage of replication is the storage cost,
which is linear in the replication factor. With erasure coding
(EC), data is split into k chunks and stored together with
m parity chunks. The k + m chunks are normally stored on
different storage nodes and failure domains. In case of failure,
the missing chunks can be recovered by using the remain-
ing ones. Reed-Solomon [36] codes (RS) are erasure codes
employed in a variety of storage systems. RS is maximum
distance separable, meaning that a RS(k,m) code can survive
up to m corrupt chunks. Also, RS codes are systematic: k of
k + m encoded chunks are identical to the original k data
chunks and can be read without any decoding process.

Figure 12 shows an example for RS(3, 2): the encoding
matrix (5×3) is multiplied by the data chunks (3×1), obtaining
a 5× 1 matrix with the 3 data chunks and 2 parity chunks.

0 0 1
0 1 0
1 0 0

c00 c01 c02
c10 c11 c12

C0
C1
C2

C2

C1

C0

p0
p1

SN 0

SN 1

SN 2

SN 3

SN 4

x =

encoding matrix data
chunks

data chunks
and parities

Fig. 12. Encoding an object with RS(3, 2). SN: Storage Node.

A. INEC-TriEC

Offloaded EC schemes have been investigated by Shi et
al. [12], [37]. In particular, TriEC is a distributed EC scheme
where encoding/decoding activities are distributed among mul-
tiple storage nodes. With INEC [37], Shi et al. introduce a set
of in-network EC primitives to accelerate both encoding and
decoding phases of different EC schemes, including TriEC
(here defined as INEC-TriEC). TriEC distributes the encoding
of data chunks to different storage nodes, generating streams
of data to be processed (i.e., data chunks). As sPIN enables
application-defined data stream processing on the NIC, it is a
good candidate for accelerating TriEC.

Figure 13 (left) shows the erasure coding of a data block in
an RS(2, 1) scheme with INEC-TriEC. The client sends two
different data chunks to two different storage nodes (SN 0 and
SN 1), where data is moved to the main memory, as for normal
RDMA write (not shown in the figure). Once the transfer
is complete, the EC computation is triggered and executed
directly on the NIC, reading data from main memory and
computing the parity chunks. These are sent to a different
storage node (SN 2 in the example). In general, for each data
chunk, m different intermediate parity chunks are generated
and distributed to different parity nodes.

B. sPIN-TriEC

With sPIN, the TriEC approach can be re-interpreted with
a per-packet vision, allowing to encode data in a streaming
fashion, hence avoiding waiting for the full chunk of the data
to be received (and copied into host memory) first. We focus
on the encoding part since its latency contributes to the write

SN 0
NIC CPU

SN 1
NIC CPU

Client SN 2
NIC CPU

SN 0
NIC CPU

SN 1
NIC CPU

Client SN 2
NIC CPU

INEC-TriEC (RDMA) sPIN-TriEC

control (ACK)

}⊕
}⊕
}⊕
}⊕

EC XORdata block 1 data block 2 parity 1 parity 2

Fig. 13. Diagram of RS(2,1) with INEC-TriEC (left) and sPIN-TriEC (right).

latency if strong consistency is required. The decoding process
should preferably be performed offline to not impact write
latency. For example, monitoring services can check the status
of the storage nodes and start the recovery process if some of
them become unreachable [6], [38].

We consider a write request format similar to the one
discussed for the replication strategies (see Section V). We
assume a write request header carrying enough information to
allow the storage node to identify its role in the distributed
algorithm. In particular, the write request header carries:
• Erasure coding scheme: RS-k-m, where k and m are the

number of data and parity chunks, respectively;
• Role: indication of whether this node stores data or parity

chunks, determining the actions performed by the handlers;
• Parity node coordinates: the coordinates of the parity nodes.
Replication and erasure coding are normally mutually exclu-
sive: a file is either replicated or erasure-coded. For this reason,
the write request header carries a resiliency strategy option,
telling us whether replication, EC, or no resiliency schemes
should be used for this write. This option is followed by either
replication or EC parameters.

1) Sending packets: In Figure 13 (right), the client trans-
mits packets to SN 0 and SN 1 in an interleaved fashion [39]–
[41]. The specific way packets are sent from the client does not
influence per-message processing approaches, such as INEC-
TriEC, where the full message has to be received anyway
to start the encoding. However, in packet-processing settings,
the interleaving of the packets allows intermediate storage
nodes to work in parallel on different packets, enabling the
overlapping of the encoding of following packets with the
aggregation (at the parity node) of the already encoded ones.

2) Intermediate encoding: We define two handlers that are
executed according to the role played by the storage node in
the data encoding: i.e., storing data or parity. In the first case,
for each packet, the packet payload gets encoded with the
selected RS scheme and m new intermediate parity packets
are sent to the respective parity nodes. For encoding, we use
the Galois field GF (28). While this requires the handlers to
scan the payload byte per byte, it allows us to use 256× 256-
byte lookup table to implement fast Galois field multiplication.
The table is copied into NIC memory at DFS-initialization
time and is shared between all DFS handlers.

3) Final parities: Nodes selected to store parity chunks
need to XOR the k intermediate parity chunks to compute

SN 2
0123

0123
aggregation sequence

⊕
SN 0

SN 1
Client

0123

0123

chunk 0

chunk 1 parity 1

parity 0

packets

Fig. 14. RS(2,1) packets and aggregation sequence.

the final parity chunk: i.e., ∀i ∈ [0, n) : p0i ⊕ p1i ⊕ · · · ⊕ pk−1
i ,

where pji indicates the i-th packet of the message carrying
the intermediate parity computed by data node j. We define
an aggregation sequence as the sequence of packets i coming
from the k data storage nodes: ∀j ∈ [0, k) : pji . Figure 14
shows an example where the aggregation sequence for i = 0
is marked: there, SN 2 must aggregate packets coming from
both SN 0 and SN 1, in the same order as they are produced.

We keep a pool of accumulators (of size equal to the packet
payload size) in the DFS state in NIC memory. The header
handler tries to allocate an accumulator from the shared pool.
If the pool is empty, then the aggregation cannot be done to the
NIC and we fall back to a CPU-based aggregation. Otherwise,
a mapping between the aggregation sequence ID i and the
accumulator is stored in an on-NIC hash table, allowing the
subsequent payload handlers to target the same accumulator
with atomic memory operations (i.e, XOR in this case).

Without the interleaved transmission of packets at the client,
SN 0 and SN 1 would not be able to compute and send
intermediate parities in parallel, delaying aggregation at SN 2
and negatively impacting the overall latency. Additionally, this
would increase the time at SN 2 between the receiving of con-
secutive packets belonging to the same aggregation sequence,
extending the allocation period of accumulator buffers.

● ● ● ● ● ●
●

●

●

●

0

100

200

4 32 256

Chunk size (KiB)

E
n
co

d
in

g
 la

te
n
cy

 (
u
s)

RS(3,2)

sPIN-TriEC

INEC-TriEC

● ● ● ●

● ●
● ●

0

20

40

60

80

1 8 64 512

Chunk size (KiB)

E
n
co

d
in

g
th

ro
u
g
h
p
u
t
(G

b
it/

s)

sPIN-TriEC

RS(6,3)

RS(3,2)

INEC-TriEC RS(6,3)

Fig. 15. Encoding latency and throughput.

C. Erasure coding performance

Unlike replication, where the sPIN handlers only forward
packets to the next children in the broadcast tree, erasure
coding needs to fully process packet data to encode it. This
makes it challenging to achieve, e.g., 400 Gbit line rate where,
with 2 KiB packets and 32 HPUs, each handler should not last
more than ∼1310 ns to not become a bottleneck.

a) Encoding latency: In Figure 15 (left) we compare the
write latency of sPIN-TriEC with the one of INEC-TriEC [37].
INEC-TriEC operates on a per-chunk basis: at the intermediate
storage nodes, chunks are first written into main memory, then
read from the on-NIC EC accelerator to be encoded and sent
to the parity nodes. With sPIN, we operate on a per-packet
basis and encode packets on the fly without passing by the
host’s main memory. This allows sPIN-TriEC to have up to 2x
lower latency. Since the TriEC results are taken from the INEC
paper [37] where a 100 Gbit/s network is used for experiments,
we scale our simulated network to the same bandwidth.

●●●●

●●●●

●●

●

●

●

●●●

●

●

●

●●●●●

●

●●

●

●●

●

●●

●

●●

●

●●

●●

●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

RS(3,2) RS(6,3)

HH PH CH HH PH CH

0

5

10

15

20

Block size (KiB)

H
a
n
d
le

r
ru

n
tim

e
 (

u
s)

200 Gbit/s
100 Gbit/s

400 Gbit/s

0

200

400

600

0 5 10 15 20 25

Handler duration (us)

#
 H

P
U

s
to

 li
n

e
 r

a
te

200 G
bit/s

100 Gbit/s

40
0

G
bi

t/s

R
S
 (

3
,2

)

R
S
 (

6
,3

)

Fig. 16. Left: handler running times for RS(3,2) and RS(6,3). Right: Number
of HPUs needed to sustain 400 Gbit/s and 200 Gbit/s (2 KiB packets) for
different average handler duration (x-axis).

b) Encoding bandwidth: The encode bandwidth is com-
puted with the same methodology of the INEC paper and
common to window-based messaging benchmarks, that is
bandwidth = (size of generated data)/(elapsed time). Fig-
ure 15 (right) shows the PsPIN-TriEC encoding bandwidth for
RS(3,2) and RS(6,3). For comparison, we plot the encoding
bandwidth of INEC-TriEC for RS(6,3). sPIN-TriEC achieves
up to 29x and 3.3x better bandwidth for 1 KiB and 512
KiB writes, respectively. For small block sizes, INEC-TriEC
is penalized by memory copy overheads, which get better
amortized with larger blocks. The sPIN-TriEC bandwidth
does not directly depend on the block size because it always
operates on packets but still experiences a 12% drop in the
throughput from 1 KiB to 512 KiB blocks. This is caused by
the higher system utilization (i.e., more packets) that leads to
more contention on NIC memory.

c) Handlers analysis: Figure 16 (left) shows handler
running times for RS(3,2) and RS(6,3). The horizontal lines
show the per-handler time budget to sustain different network
speeds. Outliers are due to smaller payload packets carrying
additional payload (i.e., when the MTU minus the packet
header does not divide the block size). The running time
of the payload handlers is dominated by the encoding loop,
which goes over all the bytes of the packet payload and
issues 5 instructions per byte for RS(3,2) and 7 for RS(6,3).
Table II reports statistics about handlers running times, number
of instructions, and instructions per cycle (IPC). As these
handlers are data-intensive, they do not sustain line rate on
the selected PsPIN configuration. Figure 16 (right) shows how
many HPUs are needed to sustain different network speeds
given an average handlers duration time (x-axis). For example,
the figure shows how for RS(6,3), a PsPIN configuration with
512 HPUs would allow sustaining 400 Gbit/s line rate for
these handlers. Assuming to have a storage backend able to
ingest this bandwidth, the modular architecture of PsPIN can
be scaled out to sustain these types of workloads at line rate.
For example, by increasing the number of clusters in PsPIN,
we can increase the number of HPUs without introducing
additional load on the per-cluster memories (L1).

Type Duration (ns) Instructions IPC
HH PH CH HH PH CH HH PH CH

RS(3,2) 215 16681 105 120 11672 35 0.56 0.7 0.33
RS(6,3) 215 23018 82 120 16028 35 0.56 0.7 0.43

TABLE II
HANDLER STATISTICS FOR DIFFERENT EC STRATEGIES.

VII. DISCUSSION

What if sPIN handlers do not run at line rate? To sustain
line rate, handlers must process packets within a limited time
budget, depending on the line rate, the packet size, and the
number of cores. If this is not the case, we have the same
scenario as a receiver not being able to receive (i.e., to process
in our case) fast enough. This can be mitigated by applying
back pressure in the network [42], [43] or by dropping packets.

How is data consistency (e.g., concurrent writes) handled?
Clients and metadata services coordinate to guarantee data
consistency and avoid that, e.g., multiple clients write to the
same part of a file. This coordination phase is part of the
control plane, while the actual data access is a part of the data
plane. This separation of concerns is typical of several DFSs.
Ceph [38] adopts the concept of capability that gives access
rights (e.g., write) to clients and is granted by the management
servers. To be able to issue a write, a client must first obtain
the respective capability, eventually triggering its revocation
from a client currently holding it. Similarly, HDFS [6] clients
need to be granted permission to write by the name nodes. As
this work focuses on the offloading of DFS policies in the data
plane, we do not assume any specific coordination protocol.

What happens if packets are lost? We assume a lossless
network where packet re-transmission (e.g., in case of data
corruption) is performed directly by the NIC. In particular, we
assume that once a packet is injected into the on-NIC PsPIN
accelerator, the NIC already verified that the packet is not
corrupted and that is not a re-transmission. This assumption is
satisfied by modern lossless RDMA interconnects [44], [45].

What happens if a storage node fails? A storage node that fails
will not send acknowledgments to clients. A client that does
not receive an acknowledgment for an ongoing operation after
a predefined time threshold can start communicating with the
metadata service to signal the failure and start the recovery
process. The specific way the recovery is handled is DFS-
dependent and not within the scope of this paper.

What happens if a client fails? A client that fails while
performing a write operation can leave some dangling state in
the NIC of the storage nodes (e.g., req_table in Listing 1).
We extend PsPIN to associate a cleanup handler with each
offloaded execution context. The cleanup handler is triggered
by the PsPIN scheduler after an incoming message (i.e., a
message for which the header packet has been received but the
completion packet is still to come) is inactive for a specified
amount of time. For the DFS execution context, the cleanup
handler cleans any dangling state and generates an event on the
storage node, signaling that a client write has been interrupted
and allowing the DFS software to handle the client failure.

How to offload complex protocols? DFSs can implement
complex protocols and need large data structures to operate.
For example, consensus protocols [46], [47] perform activities
such as leader election, log replication, and sharding. While we
do not advocate for the offloading of the full DFS logic to the

NIC, we note that consensus protocols have been accelerated
by extending RDMA primitives [48]. As sPIN provides an
RDMA+X paradigm, these primitives can easily be imple-
mented as sPIN handlers, delivering performance benefits
without waiting for a their vendor-specific implementation.

Offloading DFS building blocks in the cloud. One challenge
of deploying sPIN in the cloud is handling fairness and quality-
of-service (QoS) of NIC computing resources for multiple
tenants. While there is no multitenancy to enforce in disagrag-
gated storage systems employing dedicated storage nodes, it is
necessary to guarantee fairness and QoS in systems exploiting
client-local persistent memories. In these systems, network
offloading is even more important due to (1) higher operating-
system noise and (2) the need to reserve CPU time to dedicate
to other tenants.

DFS RDMA Policies Notes
Aut. Rep. EC

Lustre [4] é é RPC+RDMA
IBM Spectrum Scale [5] é
BeeGFS [49] é RDMA compatible
Ceph [38] é
HDFS [6] RPC+RDMA [50]
Intel DAOS [51] RPC+RDMA
MadFS [52] é é
WekaIO Matrix [53] é
PanFS [7] é RPC+RDMA
OrangeFS [8] é RPC+RDMA [54]
Gluster [55]
Orion [9] é é Client-based replication.
Octopus [10] é é RPC+RDMA
FileMR [11] é

TABLE III
DFS CHARACTERISTICS. RDMA: SUPPORT FOR RDMA. AUT.: CLIENT

AUTHENTICATION. REP.: REPLICATION. EC: ERASURE CODING. :
PROVIDED, : PARTIALLY PROVIDED, é: NOT PROVIDED.

VIII. RELATED WORK

Table III surveys state-of-the-art DFS systems, focusing on
two main characteristics: RDMA support and use of different
policies (client authentication, resilience via data replication,
and resilience via erasure coding).
RDMA- and SmartNIC-enabled storages. With the evolu-
tion of networking and storage technologies, classical software
storage stack with the operating system and host CPU in
the loop have become bottlenecks. This led many distributed
file systems to employ RDMA [4]–[11], [51], and let data
flow from storage nodes to clients and vice versa without
CPU or OS intervention. One-sided RDMA operations are
preceded by an RPC communication that validates the file
access request and exposes the interested memory region over
RDMA. Other approaches [9], [11], utilize RDMA one-sided
operations directly, relying on RDMA protection mechanisms.

LineFS [56] accelerates DFS by exploiting NVIDIA Blue-
Field NICs [57]. Differently from LineFS, we target an event-
based architecture (i.e., the event is the packet arrival) that is
generally simpler (no hardware caches, simple RISC-V cores)
but more parallel and specialized for packet processing. Being
a DPDK-based approach, LineFS does not implement the user-
level principle described in Section II-B.

1RMA [58] proposes a data-center-optimized version of
RDMA. They point out that in datacenter-scale storage sys-
tems the traditional connection-oriented RDMA approach can
face scalability challenges. Our approach is orthogonal to
1RMA as it does not rely on long-lived RDMA connections.

In iPipe [59], an actor-based framework that schedules
tasks between SmartNIC and host CPU, the authors discuss
a replicated key-value store implementation based on the
RDMA-Flat approach discussed in Section V.
Network-offloaded data replication. Hyperloop [35] imple-
ments a ring-replication algorithm that can be offloaded to
RDMA-capable NICs. It exploits triggered communication
offered by Mellanox NICs, that can be used to express happen-
before dependencies between pre-posted RDMA operations.
Since pre-posted RDMA work requests do not depend on the
content of the incoming message that triggered it, a client
needs to configure them by remotely writing to their descriptor
with an RDMA write, thereby configuring the broadcast ring.
Once requests are configured, a client can start the offloaded
replication by triggering requests on the first node of the
ring. Tailwind [60] implements RDMA-accelerated replication
that targets monotonically growing logs and delegates the
replication process to the primary storage node, which can
then use RPC+RDMA to communicate with replica nodes.
Network-offloaded erasure coding. TriEC [12] proposes a
new EC NIC offload strategies that overcome many limita-
tions of current-generation NIC-offloaded schemes for EC.
INEC [37] introduces a set of network primitives to accelerate
NIC offloaded EC schemes that, similarly to Hyperloop, rely
on pre-posted triggered communications that allow reducing
EC encoding and decoding latencies.

IX. CONCLUSION

We show how fully programmable SmartNICs fill the gap
between full-RDMA solutions, which provide the best per-
formance for one-sided accesses but do not expose enough
compute capabilities to implement DFS policies, and CPU-
based solutions, where DFS policies can be fully expressed at
the cost of additional memory or network latencies. Moreover,
we show how on-NIC packet processing techniques can accel-
erate replication and erasure coding policies without requiring
CPU or OS intervention. These results also demonstrate how,
by having fully-programmable SmartNICs, fundamental DFS
components can be offloaded to the network without depend-
ing on vendor-specific features and deployments.

All in all, these approaches to offload DFS policies can be
followed by next-generation DFSs interfacing with fast storage
media, where minimizing operation latencies (including policy
enforcement) will be fundamental to minimize I/O overheads.

ACKNOWLEDGMENTS

This work has been partially funded by the European
Projects RED-SEA (grant no. 955776) and DEEP-SEA (grant
no. 955606). Daniele De Sensi is supported by an ETH
Postdoctoral Fellowship (19-2 FEL-50).

REFERENCES

[1] A. Sainio, “NVDIMM: changes are here so what’s next,” Memory
Computing Summit, 2016.

[2] J. Min, M. Liu, T. Chugh, C. Zhao, A. Wei, I. H. Doh, and A. Kr-
ishnamurthy, “Gimbal: enabling multi-tenant storage disaggregation on
SmartNIC JBOFs,” in Proceedings of the 2021 ACM SIGCOMM 2021
Conference, 2021, pp. 106–122.

[3] I. T. Association, “InfiniBand Architecture Specification, Volume 1,
Release 1.2,” 2004.

[4] P. Braam, “The Lustre storage architecture,” arXiv preprint
arXiv:1903.01955, 2019.

[5] F. B. Schmuck and R. L. Haskin, “GPFS: A Shared-Disk File System
for Large Computing Clusters.” in FAST, vol. 2, no. 19, 2002.

[6] D. Borthakur et al., “HDFS architecture guide,” Hadoop Apache Project,
vol. 53, no. 1-13, p. 2, 2008.

[7] L. Wang, Y. Ma, A. Y. Zomaya, R. Ranjan, and D. Chen, “A parallel
file system with application-aware data layout policies for massive
remote sensing image processing in digital earth,” IEEE Transactions
on Parallel and Distributed Systems, vol. 26, no. 6, pp. 1497–1508,
2014.

[8] R. B. Ross, R. Thakur et al., “PVFS: A parallel file system for
Linux clusters,” in Proceedings of the 4th annual Linux showcase and
conference, 2000, pp. 391–430.

[9] J. Yang, J. Izraelevitz, and S. Swanson, “Orion: A distributed file system
for non-volatile main memory and RDMA-capable networks,” in 17th
USENIX Conference on File and Storage Technologies (FAST 19), 2019,
pp. 221–234.

[10] Y. Lu, J. Shu, Y. Chen, and T. Li, “Octopus: an RDMA-enabled
distributed persistent memory file system,” in 2017 USENIX Annual
Technical Conference (USENIX ATC 17), 2017, pp. 773–785.

[11] J. Yang, J. Izraelevitz, and S. Swanson, “FileMR: Rethinking RDMA
Networking for Scalable Persistent Memory,” in 17th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 20),
2020, pp. 111–125.

[12] H. Shi and X. Lu, “TriEC: tripartite graph based erasure coding NIC
offload,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2019, pp.
1–34.

[13] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[14] J. Kicinski and N. Viljoen, “eBPF hardware offload to SmartNICs: clsbpf
and XDP.”

[15] S. Miano, M. Bertrone, F. Risso, M. Tumolo, and M. V. Bernal,
“Creating complex network services with ebpf: Experience and lessons
learned,” in 2018 IEEE 19th International Conference on High Perfor-
mance Switching and Routing (HPSR). IEEE, 2018, pp. 1–8.

[16] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,
R. Raghuraman, and J. Luo, “NetFPGA–an open platform for gigabit-
rate network switching and routing,” in 2007 IEEE International Con-
ference on Microelectronic Systems Education (MSE’07). IEEE, 2007,
pp. 160–161.

[17] A. Forencich, A. C. Snoeren, G. Porter, and G. Papen, “Corundum:
An open-source 100-Gbps Nic,” in 2020 IEEE 28th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM). IEEE, 2020, pp. 38–46.

[18] M. Hennecke, “Daos: A scale-out high performance storage stack for
storage class memory,” Supercomputing frontiers, p. 40, 2020.

[19] R. Rajesh, K. B. Ramia, and M. Kulkarni, “Integration of LwIP stack
over Intel DPDK for high throughput packet delivery to applications,”
in 2014 Fifth International Symposium on Electronic System Design.
IEEE, 2014, pp. 130–134.

[20] J. Liu, C. Maltzahn, C. Ulmer, and M. L. Curry, “Performance Character-
istics of the BlueField-2 SmartNIC,” arXiv preprint arXiv:2105.06619,
2021.

[21] T. Hoefler, S. Di Girolamo, K. Taranov, R. E. Grant, and R. Brightwell,
“sPIN: High-performance streaming Processing in the Network,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2017, pp. 1–16.

[22] B. Barrett, R. Brightwell, R. Grant, S. Hemmert, K. Pedretti, K. Wheeler,
K. Underwood, R. Riesen, T. Hoefler, A. Maccabe, and T. Hudson, “The
Portals 4.2 Network Programming Interface,” 11 2018.

[23] S. Di Girolamo, A. Kurth, A. Calotoiu, T. Benz, T. Schneider, J. Beranek,
L. Benini, and T. Hoefler, “A RISC-V in-network accelerator for flexible
high-performance low-power packet processing,” in 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA),
2021.

[24] D. Rossi, F. Conti, A. Marongiu, A. Pullini, I. Loi, M. Gautschi,
G. Tagliavini, A. Capotondi, P. Flatresse, and L. Benini, “PULP: A
parallel ultra low power platform for next generation IoT applications,”
in 2015 IEEE Hot Chips 27 Symposium (HCS). IEEE, 2015, pp. 1–39.

[25] A. Kalia, D. Andersen, and M. Kaminsky, “Challenges and solutions for
fast remote persistent memory access,” in Proceedings of the 11th ACM
Symposium on Cloud Computing, 2020, pp. 105–119.

[26] T. Talpey, “RDMA extensions for remote persistent memory access,” in
12th Annual Open Fabrics Alliance Workshop, 2016.

[27] A. Kalia, M. Kaminsky, and D. G. Andersen, “FaSST: Fast, Scalable
and Simple Distributed Transactions with Two-Sided (RDMA) Datagram
RPCs,” in 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), 2016, pp. 185–201.

[28] K. Taranov, S. Di Girolamo, and T. Hoefler, “CoRM: Compactable
Remote Memory over RDMA,” in Proceedings of the 2021 International
Conference on Management of Data, 2021, pp. 1811–1824.

[29] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield,
M. Weston, R. Risen, J. Cook, P. Rosenfeld, E. Cooper-Balis et al.,
“The structural simulation toolkit,” ACM SIGMETRICS Performance
Evaluation Review, vol. 38, no. 4, pp. 37–42, 2011.

[30] X. Wang, G. Chen, X. Yin, H. Dai, B. Li, B. Fu, and K. Tan,
“StaR: Breaking the Scalability Limit for RDMA,” in 2021 IEEE 29th
International Conference on Network Protocols (ICNP). IEEE, 2021,
pp. 1–11.

[31] K. Taranov, B. Rothenberger, A. Perrig, and T. Hoefler, “sRDMA –
Efficient NIC-based Authentication and Encryption for Remote Direct
Memory Access,” in Proceedings of the 2020 USENIX Annual Technical
Conference. USENIX, Jul. 2020.

[32] H. Gobioff, G. Gibson, and D. Tygar, “Security for network attached
storage devices,” CARNEGIE-MELLON UNIV PITTSBURGH PA
DEPT OF COMPUTER SCIENCE, Tech. Rep., 1997.

[33] R. M. Karp, A. Sahay, E. E. Santos, and K. E. Schauser, “Optimal
broadcast and summation in the LogP model,” in Proceedings of the
fifth annual ACM symposium on Parallel algorithms and architectures,
1993, pp. 142–153.

[34] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman,
“LogGP: Incorporating long messages into the LogP model—one step
closer towards a realistic model for parallel computation,” in Proceed-
ings of the seventh annual ACM symposium on Parallel algorithms and
architectures, 1995, pp. 95–105.

[35] D. Kim, A. Memaripour, A. Badam, Y. Zhu, H. H. Liu, J. Padhye,
S. Raindel, S. Swanson, V. Sekar, and S. Seshan, “Hyperloop: group-
based NIC-offloading to accelerate replicated transactions in multi-tenant
storage systems,” in Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, 2018, pp. 297–312.

[36] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the society for industrial and applied mathematics, vol. 8,
no. 2, pp. 300–304, 1960.

[37] H. Shi and X. Lu, “INEC: fast and coherent in-network erasure coding,”
in 2020 SC20: International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (SC). IEEE Computer Society,
2020, pp. 924–940.

[38] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Pro-
ceedings of the 7th symposium on Operating systems design and
implementation, 2006, pp. 307–320.

[39] S. Radhakrishnan, Y. Geng, V. Jeyakumar, A. Kabbani, G. Porter,
and A. Vahdat, “SENIC: Scalable NIC for end-host rate limiting,”
in 11th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 14), 2014, pp. 475–488.

[40] A. Gulati, D. K. Panda, P. Sadayappan, and P. Wyckoff, “NIC-based
rate control for proportional bandwidth allocation in Myrinet clusters,”
in International Conference on Parallel Processing, 2001. IEEE, 2001,
pp. 305–312.

[41] I. Pratt and K. Fraser, “Arsenic: A user-accessible gigabit ethernet
interface,” in Proceedings IEEE INFOCOM 2001. Conference on Com-
puter Communications. Twentieth Annual Joint Conference of the IEEE
Computer and Communications Society (Cat. No. 01CH37213), vol. 1.
IEEE, 2001, pp. 67–76.

[42] IEEE, “RFC 802.1Qbb – Priority-based flow control.” [Online].
Available: https://1.ieee802.org/dcb/802-1qbb/

[43] S.-A. Reinemo, T. Skeie, T. Sodring, O. Lysne, and O. Trudbakken,
“An overview of QoS capabilities in InfiniBand, advanced switching
interconnect, and ethernet,” IEEE Communications Magazine, vol. 44,
no. 7, pp. 32–38, 2006.

[44] D. D. Sensi, S. D. Girolamo, K. H. McMahon, D. Roweth, and
T. Hoefler, “An in-depth analysis of the Slingshot interconnect,” 2020.

[45] Mellanox, “Introducing 200G HDR InfiniBand
Solutions,” accessed: 2021-04-07. [Online]. Available:
https://www.mellanox.com/related-docs/whitepapers/WP Introducing
200G HDR InfiniBand Solutions.pdf

[46] L. Lamport, “The part-time parliament,” in Concurrency: the Works of
Leslie Lamport, 2019, pp. 277–317.

[47] D. Ongaro and J. Ousterhout, “The raft consensus algorithm,” 2015.
[48] M. Poke and T. Hoefler, “DARE: High-Performance State Machine

Replication on RDMA Networks,” in Proceedings of the 24th In-
ternational Symposium on High-Performance Parallel and Distributed
Computing (HPDC’15). ACM, 06 2015, pp. 107–118.

[49] J. Heichler, “An introduction to BeeGFS,” 2014.
[50] N. S. Islam, M. W. Rahman, J. Jose, R. Rajachandrasekar, H. Wang,

H. Subramoni, C. Murthy, and D. K. Panda, “High performance RDMA-
based design of HDFS over InfiniBand,” in SC’12: Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis. IEEE, 2012, pp. 1–12.

[51] Z. Liang, J. Lombardi, M. Chaarawi, and M. Hennecke, “DAOS: A
Scale-Out High Performance Storage Stack for Storage Class Memory,”
in Asian Conference on Supercomputing Frontiers. Springer, 2020, pp.
40–54.

[52] J. Lu, B. Du, Y. Zhu, and D. Li, “MADFS: the mobile agent-based
distributed network file system,” in 2009 WRI Global Congress on
Intelligent Systems, vol. 1. IEEE, 2009, pp. 68–74.

[53] weka.io, “WekaIO Matrix Architecture,” 2019, Technical white paper.
[54] J. Wu, P. Wyckoff, and D. Panda, “PVFS over InfiniBand: Design and

performance evaluation,” in 2003 International Conference on Parallel
Processing, 2003. Proceedings. IEEE, 2003, pp. 125–132.

[55] A. Davies and A. Orsaria, “Scale out with GlusterFS,” Linux Journal,
vol. 2013, no. 235, p. 1, 2013.

[56] J. Kim, I. Jang, W. Reda, J. Im, M. Canini, D. Kostić, Y. Kwon, S. Peter,
and E. Witchel, “LineFS: Efficient SmartNIC Offload of a Distributed
File System with Pipeline Parallelism,” in Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles, 2021, pp.
756–771.

[57] NVIDIA, “NVIDIA BlueField,” accessed: 2021-05-20. [On-
line]. Available: https://www.nvidia.com/en-us/networking/products/
data-processing-unit/

[58] A. Singhvi, A. Akella, D. Gibson, T. F. Wenisch, M. Wong-Chan,
S. Clark, M. M. Martin, M. McLaren, P. Chandra, R. Cauble et al.,
“1RMA: Re-envisioning remote memory access for multi-tenant data-
centers,” in Proceedings of the Annual conference of the ACM Special
Interest Group on Data Communication on the applications, technolo-
gies, architectures, and protocols for computer communication, 2020,
pp. 708–721.

[59] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter, and K. Gupta,
“iPipe: A Framework for Building Distributed Applications on Multicore
SoC SmartNICs,” in Proceedings of the ACM Special Interest Group on
Data Communication (SIGCOMM), 2019.

[60] Y. Taleb, R. Stutsman, G. Antoniu, and T. Cortes, “Tailwind: fast and
atomic RDMA-based replication,” in 2018 USENIX Annual Technical
Conference (USENIX ATC 18), 2018, pp. 851–863.

https://1.ieee802.org/dcb/802-1qbb/
https://www.mellanox.com/related-docs/whitepapers/WP_Introducing_200G_HDR_InfiniBand_Solutions.pdf
https://www.mellanox.com/related-docs/whitepapers/WP_Introducing_200G_HDR_InfiniBand_Solutions.pdf
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
The experiments of this paper are based on cycle-accurate and
functional simulations.

We provide a docker image that includes all software needed to
reproduce the results presented in the paper. The image includes
the following main components: - SST simulator. This is a modified
version of the Structural Simulation Toolkit that has been adapted
to inteface PsPIN cycle-accurate simulations. - PsPIN (SST version):
this is a version of the PsPIN hardware and simulation infrastrac-
ture that has been adapted for being integrated into SST. - PsPIN
(standalone): this is a standalone version of PsPIN. We use this for
simulations outside SST (e.g., sigle-node throughput).

Additionally, we include scripts to run simulations and produce
plots for all figures and tables included in the paper. We now de-
scribe the steps needed to start the container and reproduce each
figure and table.

A detailed README.md, describing how to reproduce each fig-
ure, is included in the artifact.

AUTHOR-CREATED OR MODIFIED
ARTIFACTS:
Artifact 1
Persistent ID: https://doi.org/10.5281/zenodo.6461589
Artifact name: Building Blocks for Network-Accelerated Distributed

File Systems - AD/AE
Reproduction of the artifact with container: We ran the scripts

included in the container on a machine with the following char-
acteristics: “‘ $ lscpu Architecture: x86_64 CPU op-mode(s): 32-
bit, 64-bit Byte Order: Little Endian Address sizes: 44 bits physi-
cal, 48 bits virtual CPU(s): 64 On-line CPU(s) list: 0-63 Thread(s)
per core: 2 Core(s) per socket: 8 Socket(s): 4 NUMA node(s): 4
Vendor ID: GenuineIntel CPU family: 6 Model: 46 Model name:
Intel(R) Xeon(R) CPU X7550 @ 2.00GHz Stepping: 6 CPU MHz:
2075.744 BogoMIPS: 3990.11 Virtualization: VT-x L1d cache: 32K
L1i cache: 32K L2 cache: 256K L3 cache: 18432K NUMA node0
CPU(s): 0,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60 NUMA node1
CPU(s): 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61 NUMA node2
CPU(s): 2,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62 NUMA node3
CPU(s): 3,7,11,15,19,23,27,31,35,39,43,47,51,55,59,63 Flags: fpu vme
de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36
clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx rdtscp
lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology
nonstop_tsc cpuid aperfmperf pni dtes64 monitor ds_cpl vmx est
tm2 ssse3 cx16 xtpr pdcm dca sse4_1 sse4_2 x2apic popcnt lahf_lm
pti ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid dtherm
ida

$ grep MemTotal /proc/meminfo MemTotal: 1056847416 kB (1
TiB)

$ uname -a Linux einstein 4.19.0-6-amd64 #1 SMP Debian 4.19.67-
2 (2019-08-28) x86_64 GNU/Linux

$ docker -v Docker version 20.10.6, build 370c289 “‘
The time taken to run all the scripts was about 24-30 h.

	Introduction
	Distributed File Systems and SmartNICs
	DFS policies
	Network acceleration
	Streaming processing in the network

	NIC-offloaded DFS policies
	Client request format
	sPIN handlers
	Data persistence
	Scalability

	Full-system design considerations
	Experimental methodology

	Client request authentication
	Request authentication overhead

	Data replication
	Broadcast schedules in sPIN
	Data replication performance
	Write latency
	Write goodput
	Varying the replication factor
	Handlers runtime analysis

	Erasure coding
	INEC-TriEC
	sPIN-TriEC
	Sending packets
	Intermediate encoding
	Final parities

	Erasure coding performance

	Discussion
	Related work
	Conclusion
	References

